Skip to main content

Dilute, Trapped Bose Gases and Bose-Einstein Condensation

  • Chapter
Large Coulomb Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 695))

Abstract

The recent experimental success in creating Bose-Einstein condensates of alkali atoms, honored by the Nobel prize awards in 2001 [1,5], led to renewed interest in the mathematical description of interacting Bose gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.A. Cornell and C.E. Wieman, Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, in: Les Prix Nobel 2001 (The Nobel Foundation, Stockholm, 2002), pp. 87–108. Reprinted in: Rev. Mod. Phys. 74, 875–893 (2002); Chem. Phys. Chem. 3, 476–493 (2002).

    Google Scholar 

  2. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Theory of Bose- Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463–512 (1999).

    Article  ADS  Google Scholar 

  3. F.J. Dyson, Ground-State Energy of a Hard-Sphere Gas, Phys. Rev. 106, 20–26 (1957).

    Article  MATH  ADS  Google Scholar 

  4. E.P. Gross, Structure of a Quantized Vortex in Boson Systems, Nuovo Cimento 20, 454–466 (1961). Hydrodynamics of a superfluid condensate, J. Math. Phys. 4, 195–207 (1963).

    Article  MATH  Google Scholar 

  5. W. Ketterle, When atoms behave as waves: Bose-Einstein condensation and the atom laser, in: Les Prix Nobel 2001 (The Nobel Foundation, Stockholm, 2002), pp. 118–154. Reprinted in: Rev. Mod. Phys. 74, 1131–1151 (2002); Chem. Phys. Chem. 3, 736–753 (2002).

    Google Scholar 

  6. W. Lenz, Die Wellenfunktion und Geschwindigkeitsverteilung des entarteten Gases, Z. Phys. 56, 778–789 (1929).

    Article  MATH  ADS  Google Scholar 

  7. E.H. Lieb, Simplified Approach to the Ground State Energy of an Imperfect Bose Gas, Phys. Rev. 130, 2518–2528 (1963).

    Article  ADS  Google Scholar 

  8. E.H. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, Phys.Rev. 130, 1605–1616 (1963). E.H. Lieb, Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum, Phys. Rev. 130, 1616–1624 (1963).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. E.H. Lieb and M. Loss, Analysis, 2nd ed., Amer. Math. Soc., Providence (2001).

    MATH  Google Scholar 

  10. E.H. Lieb and R. Seiringer, Proof of Bose-Einstein Condensation for Dilute Trapped Gases, Phys. Rev. Lett. 88, 170409-1–4 (2002).

    Article  ADS  Google Scholar 

  11. E.H. Lieb, R. Seiringer, J.P. Solovej, and J. Yngvason, The Ground State of the Bose Gas, in: Current Developments in Mathematics, 2001, 131–178, International Press, Cambridge (2002). See also arXiv:math-/0405004

    Google Scholar 

  12. E.H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a Trap: A Rigorous Derivation of the Gross-Pitaevskii Energy Functional, Phys. Rev. A 61, 043602-1–13 (2000).

    Article  ADS  Google Scholar 

  13. E.H. Lieb, R. Seiringer, and J. Yngvason, A Rigorous Derivation of the Gross- Pitaevskii Energy Functional for a Two-Dimensional Bose Gas, Commun. Math. Phys. 224, 17–31 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. E.H. Lieb, R. Seiringer, and J. Yngvason, Superfluidity in Dilute Trapped Bose Gases, Phys. Rev. B 66, 134529-1–6 (2002).

    Article  ADS  Google Scholar 

  15. E.H. Lieb, R. Seiringer, and J. Yngvason, Poincaré Inequalities in Punctured Domains, Ann. Math. 158, 1067–1080 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  16. E.H. Lieb, R. Seiringer, and J. Yngvason, One-Dimensional Bosons in Three-Dimensional Traps, Phys. Rev. Lett. 91, 150401-1–4 (2003). One-Dimensional Behavior of Dilute, Trapped Bose Gases, Commun. Math. Phys. 244, 347–393 (2004).

    Article  ADS  Google Scholar 

  17. E.H. Lieb and J. Yngvason, Ground State Energy of the Low Density Bose Gas, Phys. Rev. Lett. 80, 2504–2507 (1998).

    Article  ADS  Google Scholar 

  18. E.H. Lieb and J. Yngvason, The Ground State Energy of a Dilute Two- Dimensional Bose Gas, J. Stat. Phys. 103, 509–526 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  19. O. Penrose and L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys. Rev. 104, 576–584 (1956).

    Article  MATH  ADS  Google Scholar 

  20. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13, 451–454 (1961).

    MathSciNet  Google Scholar 

  21. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV. Analysis of Operators, Academic Press (1978).

    Google Scholar 

  22. R. Seiringer, Gross-Pitaevskii Theory of the Rotating Bose Gas, Commun. Math. Phys. 229, 491–509 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. R. Seiringer, Ground state asymptotics of a dilute, rotating gas, J. Phys. A: Math. Gen. 36, 9755–9778 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. B. Simon, Trace ideals and their application, Cambridge University Press (1979).

    Google Scholar 

  25. G. Temple, The theory of Rayleigh's principle as applied to continuous systems, Proc. Roy. Soc. London A 119, 276–293 (1928).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Seiringer, R. (2006). Dilute, Trapped Bose Gases and Bose-Einstein Condensation. In: Dereziński, J., Siedentop, H. (eds) Large Coulomb Systems. Lecture Notes in Physics, vol 695. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32579-4_6

Download citation

Publish with us

Policies and ethics