Advertisement

The Spin-Orbit Rotation of Mercury

  • Sandrine D’Hoedt
  • Anne Lemaitre
Part of the Lecture Notes in Physics book series (LNP, volume 682)

Abstract

One of the main characteristics of Mercury is its 3 : 2 spin-orbit resonance. The analytical 2-degrees of freedom model proposed here takes into account this phenomenum thanks to the introduction of two suitable resonant variables. Our model must be considered as a base for future computations; it does not include perturbations due to the in.uence of the other planets, the non-alignment of spin axis with the normal to the equatorial plane and the non-rigidity of the body. These perturbations will be added later on. However the results obtained by our simplified model for the angular variables frequencies are coherent with those given by existing complete numerical models.

Keywords

Canonical Transformation Space Mission Celestial Mechanics Spin Axis Dynamical Astronomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Anderson, G. Colombo, P.B. Esposito, E.L Lau, G.B. and Trager, G.B, Icarus, 71, 337 (1987) CrossRefADSGoogle Scholar
  2. 2.
    V.V. Beletskii, Celestial Mechanics, 6, 359 (1972) MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    P. Bretagnon, Astronomy and Astrophysics, 114, 278 (1982) zbMATHADSGoogle Scholar
  4. 4.
    T.J. Burns, Celestial Mechanics, 19, 297 (1979) zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    G. Colombo, Nature, 208, 575 (1965) CrossRefADSGoogle Scholar
  6. 6.
    S. D’Hoedt and A. Lemaitre, Celestial Mechanics and Dynamical Astronomy, 89, 267 (2004) MathSciNetCrossRefADSzbMATHGoogle Scholar
  7. 7.
    J. Henrard and G. Schwanen, Celestial Mechanics and Dynamical Astronomy, 89, 181 (2004) zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    H. Kinoshita, Publ. Astron. Soc. Japan, 24, 423 (1972) MathSciNetADSGoogle Scholar
  9. 9.
    A.C. Correia and J. Laskar, Nature, 429, 848 (2004) CrossRefADSGoogle Scholar
  10. 10.
    V. Lainey, L. Duriez and A. Vienne, Astronomy and Astrophysics, 420, 1171 (2004) CrossRefADSGoogle Scholar
  11. 11.
    S.J Peale: The Astronomical Journal, 74, 483 (1969) CrossRefADSGoogle Scholar
  12. 12.
    S.J Peale: The Astronomical Journal, 79, 722 (1974) CrossRefADSGoogle Scholar
  13. 13.
    N. Rambaux and E. Bois: Astronomy and Astrophysics, 413, 381 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Sandrine D’Hoedt
    • 1
  • Anne Lemaitre
    • 1
  1. 1.Unité de Systèmes Dynamiques – Département de MathématiqueFacultés Universitaires Notre-Dame de la PaixNAMURBelgium

Personalised recommendations