The Synchronous Rotation of the Moon

  • Jacques Henrard
Part of the Lecture Notes in Physics book series (LNP, volume 682)


Like most of the regular satellites of the solar system, the Moon presents the same face to its planet. Reference [9] showed how this peculiar feature correspond to an equilibrium, a Cassini’s state, of a simplified model of the rotation and how perturbations from this model lead not to the destabilization of this equilibrium but to the excitation of librations around it. The fact that so many satellites are found in this special state is due to internal dissipations of energy in the satellites which drive them to a state of minimum energy [4]. For the Moon itself several more or less complete theories of the librations around the mean equilibrium have been developed. Let us mention the works of Eckhardt (1965), Migus (1980) and [7]. The last one with its complements [8] seems the most elaborate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andoyer, H., 1926, Mécanique Céleste, Gauthier-Villars, Paris Google Scholar
  2. 2.
    Cassini, G.D.: 1730, De l’origine et du progrès de l’astronomie et de son usage dans la géographie et la navigation, Mem. Acad. Sc. Paris, 8, 1–50 Google Scholar
  3. 3.
    Deprit, A.: 1967, Free rotation of an Rigid body studied in the Phase space, Am. J. of Physics, 35, 424–428 CrossRefADSGoogle Scholar
  4. 4.
    Goldreich, P. and Peale, S.J.: 1966, Spin-Orbit Coupling in the Solar System, Astron. J., 71,425–437 CrossRefADSGoogle Scholar
  5. 5.
    Henrard, J. and Murigande, C.: 1987, Colombo’s Top, Celest.l Mech. & Dyn. Astr., 40, 345–366, zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Henrard, J. and Schwanen, G.: 2004, Rotation of Synchonous Satellites: Application to the Galilean satellites, Celest.l Mech. & Dyn. Astr., submitted Google Scholar
  7. 7.
    Moons, M.: 1982, Physical libration of the Moon, Celestial Mechanics, 26, 131–142 zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Moons, M.: 1984, Planetary Perturbations on the Librations of the Moon, Celestial Mechanics, 34, 263–274 zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Peale, S.J.: 1969, Generalized Cassini’s Law, Astron. J., 74, 483–489 CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jacques Henrard
    • 1
  1. 1.Département de mathématique FUNDP 8Rempart de la ViergeBelgique

Personalised recommendations