Modelling Collisions Between Asteroids: From Laboratory Experiments to Numerical Simulations

  • Patrick Michel
Part of the Lecture Notes in Physics book series (LNP, volume 682)


Thanks to the development of sophisticated numerical codes, a major breakthrough has been achieved in our understanding of the process involved in small body collisions. Such events play a fundamental role in all the stages of the formation and evolution of planetary systems, and more particularly of our Solar System. Laboratory experiments on centimeter-sized targets have been performed to improve our knowledge on this process, but their extrapolation to asteroid scales remains confronted to major diffculties. In this lecture, we present a brief review of our current understanding of the fragmentation process of solid bodies and its implementation in numerical codes aimed at simulating asteroid break-up events. The most recent results provided by numerical simulations are also presented. Although our current understanding is still based on several limitations and assumptions, the development of sophisticated numerical codes accounting for the fragmentation of an asteroid and for the gravitational interactions of the generated fragments have allowed to improve greatly our knowledge on the main mechanisms that are at the origin of some observed features in the asteroid belt. In particular, the simulations have demonstrated that, for bodies larger than several kilometers, the collisional process does not only involves the fragmentation of the asteroid but also the gravitational interactions between the fragments that are ejected. This latter mechanism can lead to the formation of large agregates by gravitational reaccumulation of smaller fragments, allowing to explain the presence of large members within asteroid families. Numerical simulations of the complete process have thus been able to reproduce for the first time the main properties of asteroid families, each formed by the disruption of a large parent body, and also to derive some information on the possible internal structure of the parent bodies. A large amount of work remains however necessary to understand in deeper details the physical process as a function of material properties that are relevant to asteroids and to determine in a more quantitative way the outcome properties such as fragments’ shapes and rotational states.


Smooth Particle Hydrodynamic Parent Body Modelling Collision Asteroid Belt Ejection Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Asphaug: Dynamic fragmentation in the solar system: applications of fracture mechanics and hydrodynamics to questions of planetary evolution. PhD Thesis, The University of Arizona (1993) Google Scholar
  2. 2.
    E. Asphaug, S.J. Ostro, R.S. Hudson, D.J. Scheeres, W. Benz: Nature 393, 437 (1998) CrossRefADSGoogle Scholar
  3. 3.
    E. Asphaug, E.V. Ryan, M.T. Zuber: Asteroid Interiors. In: Asteroids III, ed by W.F. Bottke JR, A. Cellino, P. Paolicchi, R.P. Binzel, T. Gehrels (Univ. of Arizona Press, Tucson 2003), pp 463–484 Google Scholar
  4. 4.
    W. Benz: Smooth Particle Hydrodynamics – A Review. In: Proceedings of the NATO Advanced Research Workshop on The Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects, ed by J. Robert Buchler (Kluwer Academic Publishers, Dordrecht 1990) Google Scholar
  5. 5.
    W. Benz, W.L. Slattery, A.G.W. Cameron: Icarus 74, 516 (1988) CrossRefADSGoogle Scholar
  6. 6.
    W. Benz, E. Asphaug: Icarus 107, 98 (1994) CrossRefADSGoogle Scholar
  7. 7.
    W. Benz, E. Asphaug: Comput. Phys. Comm. 87, 253 (1995) zbMATHCrossRefADSGoogle Scholar
  8. 8.
    W. Benz, E. Asphaug: Icarus 142, 5 (1999) CrossRefADSGoogle Scholar
  9. 9.
    W.F. Bottke, D. Vokrouhlický, M. Borz, D. Nesvorný, A. Morbidelli: Science 294, 1693 (2001) CrossRefADSGoogle Scholar
  10. 10.
    W.F. Bottke, W.F., D. Vokrouhlický, D. P. Rubincam, M. Broz: The E.ect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids. In: Asteroids III, ed by W.F. Bottke JR, A. Cellino, P. Paolicchi, R.P. Binzel, T. Gehrels (Univ. of Arizona Press, Tucson 2003), pp 501–515 Google Scholar
  11. 11.
    C.R. Chapman, D.R. Davis, R. Greenberg: Meteoritics 17, 193 (1982) ADSGoogle Scholar
  12. 12.
    C.R. Chapman, P. Paolicchi, V. Zappal`a, R.P. Binzel, J.F. Bell: Asteroid families: Physical properties and evolution. In: Asteroids II, ed by R.P. Binzel, T. Gehrels, M.S. Matthews, (Univ. of Arizona Press, Tucson 1989), pp 386–415 Google Scholar
  13. 13.
    J.S. Curtis: An accelerated reservoir light-gas gun. NASA TND-1144 (1962) Google Scholar
  14. 14.
    D.R. Davis, D.R., C.R. Chapman, S.J. Weidenschilling, R. Greenberg: Icarus 62, 30 (1985) CrossRefADSGoogle Scholar
  15. 15.
    D.R. Davis, E.V. Ryan: Icarus 83, 156 (1990) CrossRefADSGoogle Scholar
  16. 16.
    D.R. Davis, D.D. Durda, F. Marzari, A. Campo Bagatin, R. Gil-Hutton: Collisional Evolutions of Small Body Populations. In: Asteroids III, ed by W.F. Bottke JR, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. of Arizona Press, Tucson 2003), pp 545–558 Google Scholar
  17. 17.
    D.D. Durda, W.F. Bottke, B.L. Enke, W.J. Merline, E. Asphaug, D.C. Richardson, Z.M. Leinhardt: Icarus, in press (2004) Google Scholar
  18. 18.
    I. Giblin, G. Martelli, P.N. Smith, M. Di Martino: Planet. Space Sci. 42, 1027 (1994) CrossRefADSGoogle Scholar
  19. 19.
    D.E. Grady, M.E. Kipp: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17, 147 (1980) CrossRefGoogle Scholar
  20. 20.
    W.K. Hartmann: Icarus 10, 201 (1978) CrossRefADSGoogle Scholar
  21. 21.
    K.A. Holsapple: Plan. Space. Sci. 42, 1067 (1994) CrossRefADSGoogle Scholar
  22. 22.
    K.R. Housen, K.A Holsapple: Icarus 84, 226 (1990) CrossRefADSGoogle Scholar
  23. 23.
    K.R. Housen, R.M. Schmidt, K.A. Holsapple: Icarus 94, 180 (1991) CrossRefADSGoogle Scholar
  24. 24.
    Z. Knezěvic, A. Lemaître, A. Milani: The Determination of Asteroid Proper Elements. In: Asteroids III, ed by W.F. Bottke JR, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. of Arizona Press, Tucson 2003), pp 603–612 Google Scholar
  25. 25.
    N. Kawashima, A. Yamori, M. Yanagisawa, H. Kubo, M. Kohno, S. Teii: IEEE Trans. Magnetics 29, 431 (1993) CrossRefADSGoogle Scholar
  26. 26.
    B.R. Lawn, T.R. Wilshaw: Fracture of Brittle Solids (Cambridge University Press, New York 1975) Google Scholar
  27. 27.
    G. Martelli, P. Rothwell, P.N. Smith, I. Giblin, J. Martinson, E. Ducrocq, M. Wettstein, M. Di Martino, P. Farinella: Jets of fragments from catastrophic break-up and their astrophysical implications. In: Origin and Evolution of Interplanetary Dust, ed by H. Hasegawa, A.C. Levasseur-Regourd (Kluwer, Dordrecht 1991), pp 383–386 Google Scholar
  28. 28.
    G. Martelli, E.V. Ryan, A.M. Nakamura, I. Giblin: Plan. Space. Sci. 42, 1013 (1994) CrossRefADSGoogle Scholar
  29. 29.
    F. Marzari, D. Davis, V. Vanzani: Icarus 113, 168 (1995) CrossRefADSGoogle Scholar
  30. 30.
    T. Matsui, T. Waza, K. Kani, S. Suzuki: J. Geophys. Res. 87, 10968 (1982) ADSCrossRefGoogle Scholar
  31. 31.
    H.J. Melosh: Impact cratering: a geologic process (University Press, New York 1989) Google Scholar
  32. 32.
    H.J. Melosh, Ryan, E.V., E. Asphaug: J. Geophys. Res. 97, 14735 (1992) ADSCrossRefGoogle Scholar
  33. 33.
    H.J. Melosh, E. V. Ryan: Icarus 129, 562 (1997) CrossRefADSGoogle Scholar
  34. 34.
    P. Michel, W. Benz, P. Tanga, D. C. Richardson: Science 294, 1696 (2001) CrossRefADSGoogle Scholar
  35. 35.
    P. Michel, W. Benz, P. Tanga, D. C. Richardson: Icarus 160, 10 (2002) CrossRefADSGoogle Scholar
  36. 36.
    P. Michel, W. Benz, D.C. Richardson: Nature 421, 608 (2003) CrossRefADSGoogle Scholar
  37. 37.
    P. Michel, W. Benz, D.C. Richardson: Icarus, accepted (2004) Google Scholar
  38. 38.
    H. Mizutani, M. Kumazawa, M. Kato, T. Masuda, S. Kawakami, Y. Takagi, K. Kani: Proc. ISAS Lunar Planet. Symp. 14, 267 (1981) ADSGoogle Scholar
  39. 39.
    H. Nakamura, K. Ito, N. Fujii, H. takeuchi, M. Miyamoto, and Y. Kobayashi: Proc.ISAS Lunar Planet. Symp 16, 55 (1983) Google Scholar
  40. 40.
    A. Nakamura, A. Fujiwara: Icarus 92, 132 (1991) CrossRefADSGoogle Scholar
  41. 41.
    D. Nesvorný, W.F. Bottke, L. Dones, and H. F. Levison: Nature 417, 720 (2002) CrossRefADSGoogle Scholar
  42. 42.
    D. Nesvorný, S. Ferraz-Mello, M. Holman, A. Morbidelli: Regular and Chaotic Dynamics in the Mean-Motion Resonances: Implications for the Structure and Evolution of the Asteroid Belt. In: Asteroids III, ed by W.F. Bottke JR, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. of Arizona Press, Tucson 2003), pp 379–394 Google Scholar
  43. 43.
    P. Pravec, A.W. Harris: Icarus 148, 12 (2000) CrossRefADSGoogle Scholar
  44. 44.
    D.C. Richardson, D. C: Mon. Not. R. Astron. Soc. 269, 493 (1994) ADSGoogle Scholar
  45. 45.
    D.C. Richardson, T. Quinn, J. Stadel, and G. Lake: Icarus 143, 45 (2000) CrossRefADSGoogle Scholar
  46. 46.
    D.C. Richardson, Z.M. Leinhardt, W. F. Bottke, H. J. Melosh, E. Asphaug. Gravitational aggregates: Evidence and evolution. In: Asteroids III, ed by W.F. Bottke JR, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. of Arizona Press, Tucson 2003), pp 501–515 Google Scholar
  47. 47.
    E.V. Ryan, H.J. Melosh: Icarus 133, 1 (1998) CrossRefADSGoogle Scholar
  48. 48.
    A.E. Seigel: The theory of high speed guns. AGARDograph 91(1965) Google Scholar
  49. 49.
    P. Tanga, A. Cellino, P. Michel, V. Zappal`a, P. Paolicchi, and A. dell’Oro: Icarus 141, 65 (1999) CrossRefADSGoogle Scholar
  50. 50.
    S.L. Thompson, H.S. Lauson: Improvement in the Chart D radiation hydrodynamic code III: revised analytic equation of state. Sandia National Laboratory Report SC-RR-71 0714 (1972) Google Scholar
  51. 51.
    J.H. Tillotson: Metallic equations of state for hypervelocity impact. General Atomic Report GA-3216 (1962) Google Scholar
  52. 52.
    J.B. Walsh: J. Geophys. Res. 70, 381 (1965) zbMATHADSCrossRefGoogle Scholar
  53. 53.
    W.R. Ward, R.M. Canup: Nature 403, 741 (2000) CrossRefADSGoogle Scholar
  54. 54.
    W.A. Weibull: Ingvetensk. Akad. Handl. 151, 5 (1939) Google Scholar
  55. 55.
    D.K. Yeomans et al: Science 278, 2106 (1997) CrossRefADSGoogle Scholar
  56. 56.
    V. Zappalà, A. Cellino, A. Dell’Oro, P. Paolicchi: Physical and Dynamical Properties of Asteroid Families. In: Asteroids III, ed by W.F. Bottke JR, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. of Arizona Press, Tucson 2003), pp 619–631 Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Patrick Michel
    • 1
  1. 1.Observatoire de la C’te d’Azur, UMR 6529 Cassini/CNRSFrance

Personalised recommendations