Modelling and Characterizing the Earth’s Gravity Field: From Basic Principles to Current Purposes

  • Florent Deleffie
  • Pierre Exertier
Part of the Lecture Notes in Physics book series (LNP, volume 682)


The Earth is a specific body in the Universe. Nowadays, thanks to the high accuracy of the measurements obtained by different techniques of geodesy, its shape, as well as its gravity field, can be described and characterized in a very precise way, with thousands of parameters: the Earth is a spherical body only in a very first approximation!


Spherical Harmonic Solid Earth Orbit Determination Satellite Laser Range Global Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barriot J.-P., Valès N., Balmino G., Rosenblatt P., A 180th degree and order model of the Venus gravity field from Magellan line of sight residual Doppler data,Geophysical Research Letters, 25 (19), 3743–3746, 1998 CrossRefADSGoogle Scholar
  2. 2.
    Beutler G., M.R. Drinkwater, R. Rummel, Rudolf von Steiger (eds.), Earth Gravity Field from Space - from Sensors to Earth Sciences, ISBN 1–4020-1408–2, Kluwer Academic Publishers, 2003 Google Scholar
  3. 3.
    Beutler G., T. Schildknecht, U. Hugentobler, W. Gurtner, Orbit Determination in Satellite Geodesy, Adv. Space Res., 31, 8, pp. 1853–1868, 2003 CrossRefADSGoogle Scholar
  4. 4.
    Biancale R., G. Balmino, J.-M. Lemoine, J.-C. Marty, B. Moynot, F. Barlier, P. Exertier, O. Laurain, P. Gegout, A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1, Geophys. Res. Letters, 27, 22, 3611–3614, 2000 CrossRefADSGoogle Scholar
  5. 5.
    Cazenave A., K. Feigl, Formes et mouvements de la Terre. Satellites et géodésie,CNRS Editions, 1994 Google Scholar
  6. 6.
    Cazenave A., The Geoid and Oceanic Lithosphere,in ’Geoid and its Geophysical Interpretations’, P. Vanick Ed., CRC Press Inc., 1994 Google Scholar
  7. 7.
    Cazenave A., R.S. Nerem, Redistributing Earth’s Mass, Science, 297, 783–784, 2002 Google Scholar
  8. 8.
    Cox C., B.F. Chao, Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998, Science, 297, 831–833, 2002 Google Scholar
  9. 9.
    Deleflie F., Théorie semi-analytique des mouvements quasi-circulaires moyens en mécanique spatiale - Applications aux satellites géodésiques,Thèse de doctorat de l’Observatoire de Paris, 2002 Google Scholar
  10. 10.
    Deleflie F., P. Exertier, G. Métris, P. Berio, O. Laurain, J.-M. Lemoine, R. Biancale, Why the 18.6 year tide cannot explain the change of sign observed in J2dot?,Advances in Geosciences, 1, 103–108, 2003 Google Scholar
  11. 11.
    Deleflie F., G. Métris, P. Exertier, Long period variations of the eccentricity vector for near circular orbits around a non spherical body, submitted to Celest. Mech., 24p, 2003 Google Scholar
  12. 12.
    Dickey J.O., Time Variable Gravity: An Emerging Frontier in Interdisciplinary Geodesy, IAG Symposia, 123, Sideris (ed.), pp 1–3, Springer-Verlag, 2001 Google Scholar
  13. 13.
    Dickey J. O., S. L. Marcus, O. de Viron, and I. Fukumori, Recent Earth oblateness variations: Unraveling climate and postglacial rebound effects,Science, 298, 1975–1977, 2002 Google Scholar
  14. 14.
    Eanes R.J., S. Bettadpur, in Global Gravity Field and Its Temporal Variations, pp. 30–41,Springer-Verlag, New York, 1996 Google Scholar
  15. 15.
    Enfield D.B., El Niño, past and present,Reviews of Geophysics, 27, 1, 158–187, 1989 ADSCrossRefGoogle Scholar
  16. 16.
    Exertier P., Geopotential From Space Techniques, Celest. Mech., 57, 137–153, 1993 CrossRefADSGoogle Scholar
  17. 17.
    Garmier R., J.-P. Barriot, Ellipsoidal harmonic expansion of the gravitational potential: theory and application, Celest. Mech., 79, 4, 2001 zbMATHMathSciNetGoogle Scholar
  18. 18.
    Gegout P., and A. Cazenave, Temporal variations of the Earth gravity field for 1985–1989 derived from Lageos, Geophys. J. Int., 114, 347–359, 1993 ADSCrossRefGoogle Scholar
  19. 19.
    Gruber T., A. Bode, C. Reigber, P. Schwintzer, G. Balmino, R. Biancale, J.-M. Lemoine, GRIM5-C1: Combination solution of the global gravity field to degree and order 120, Geophys. R. Let., 27, 24, 4005–4008, 2000 CrossRefADSGoogle Scholar
  20. 20.
    Kaula W.M., Theory of satellite geodesy, Blaisdell Publishing Company, Waltham, Masachusetts, pp 8–10, 1966 Google Scholar
  21. 21.
    Konopliv A. S., Asmar S. W. Carranza E., Sjogren W. L., and Yuan D. N., Recent Gravity Models as a Result of the Lunar Prospector,Icarus, 150, 1–18, 2001 CrossRefADSGoogle Scholar
  22. 22.
    Lemoine F.G., D. E. Smith, D. D. Rowlands, M. T. Zuber, G. A. Neumann, and D. S. Chinn, An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor, J. Geophys. Res., 106(E10), 23359–23376, 2001 CrossRefADSGoogle Scholar
  23. 23.
    Matsumoto K., Heki K., and Hanada H., Global Lunar Gravity Field Recovery from SELENE, Proc. International VLBI Service for Geodesy and Astrometry 2002 General Meeting, 2002 Google Scholar
  24. 24.
    Moore P., J. Wang, Geocentre Variation from Laser Tracking of LAGEOS1/2 and Loading Data, Adv. Space Res., 31, 8, pp. 1927–1933, 2003 CrossRefADSGoogle Scholar
  25. 25.
    Moore P., J.F. Turner, Z. Qiang, CHAMP Orbit Determination and Gravity Field Recovery,Adv. Space Res., 31, 8, pp. 1897–1903, 2003 CrossRefADSGoogle Scholar
  26. 26.
    Morando B., Mouvement d’un satellite artificiel de la Terre,Gordon & Breach, 1974 Google Scholar
  27. 27.
    Panet I., M. Diament, O. Jamet, A wavelet based representation of the gravity field, 2nd International GOCE user workshop, ESA, March 2004 Google Scholar
  28. 28.
    Peltier W.R., Constraint on Deep Mantle Viscosity from Lageos acceleration data, Nature, 304, 434–436, 1983 CrossRefADSGoogle Scholar
  29. 29.
    Ray R.D., and D.E. Cartwright, Satellite altimeter observations of the Mf and Mm ocean tides, with simultaneous orbit corrections,in Gravimetry and Space Techniques Applied to Geodynamics and Ocean Dynamics, edited by B.E. Schutz, A. Anderson, C. Froidevaux, and M. Parke, 69–78, American Geophysical Union Geophyical Monograph 82, IUGG Vol. 17, Washington D.C., 1994 Google Scholar
  30. 30.
    Reigber C., P. Schwintzer, K.-H. Neumayer, F. Barthelmes, R. Knig, C. Frste, G. Balmino, R. Biancale, J.-M. Lemoine, S. Loyer, S. Bruinsma, F. Perosanz, T. Fayard, The CHAMP-only Earth Gravity Field Model EIGEN-2,Adv. Space Res., 31, 8, pp. 1883–1888, 2003 CrossRefADSGoogle Scholar
  31. 31.
    Rubincam D.P., Post-glacial rebound observed from Lageos and the effective viscosity of the lower mantle,J. Geophys. Res., 89, 1077–1087, 1984 ADSCrossRefGoogle Scholar
  32. 32.
    Sillard P., Estimation par moindres carrés, Lavoisier Editions, 2001 Google Scholar
  33. 33.
    Smith D.E., R. Kolenkiewicz, P.J. Dunn, M.H. Torrence, Earth scale below a part per billion from Satellite Laser Ranging, IAG Symposia, 121, Schwarz (ed.), pp 3–12, Springer-Verlag, 2000 Google Scholar
  34. 34.
    Yoder C.F., J.G. Milliams, J.D. Dickey, B.E. Schutz, R.J. Eanes, B.D. Tapley, Secular variation of Earth’s gravitational harmonics J2 coefficient from LAGEOS and non tidal acceleration of Earth rotation, Nature, 303, 757–762, 1983 CrossRefADSGoogle Scholar
  35. 35.
    Tavernier G., P. Willis, The International DORIS Service,Geodesist’s Handbook, Springer-Verlag, 2004. Google Scholar
  36. 36.
    Zhu Y., C.K. Shum, M.K. Cheng, B.D. Tapley, and B.F. Chao, Long-period variations in gravity field caused by mantle anelasticity, J. Geophys. Res., 101, B.5, 11,243–11,248, 1996 Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Florent Deleffie
    • 1
  • Pierre Exertier
    • 1
  1. 1.OCA/GEMINI Av. N. CopernicGrasse

Personalised recommendations