Skip to main content

Replacement Strategies to Maintain Useful Diversity in Steady-State Genetic Algorithms

  • Conference paper
Soft Computing: Methodologies and Applications

Part of the book series: Advances in Soft Computing ((AINSC,volume 32))

Summary

In this paper, we propose a replacement strategy for steady-state genetic algorithms that takes into account two features of the element to be included into the population: a measure of the contribution of diversity to the population and the fitness function. In particular, the proposal attempts to replace an element in the population with worse values for these two features. In this way, the diversity of the population is increased and the quality of its solutions is improved, simultaneously, maintaining high levels of useful diversity. Experimental results show that the use of the proposed replacement strategy allows significant performance to be achieved for problems with different difficulties, which regards to other replacement strategies presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck T (1992) Self-adaptation in genetic algorithms. In: F.J. Varela, P. Bourgine, (eds) Proc. of the First European Conference on Artificial Life. The MIT Press, Cambridge, MA, 263–271.

    Google Scholar 

  2. Bedau MA, Ronneburg F, Zwick M (1992) Dynamic of diversity in an evolving population. In: R. Männer, B. Manderick, (eds) Parallel Problem Solving from Nature 2. Elsevier Science Publichers, Amsterdam, 95–104.

    Google Scholar 

  3. Bonham CR, Parmee IC (1999) An investigation of exploration and exploitation within cluster oriented genetic algorithms (COGAs). In: Proc. of the Genetic and Evolutionary Computation Conference 1999. Morgan Kaufmann, San Francisco, California, 1491–1497.

    Google Scholar 

  4. De Jong KA, Sarma J (1993) Generation gaps revisited. In: L.D. Whitley (ed) Foundations of Genetic Algorithms 2. Morgan Kaufmann, San Mateo, CA, 19–28.

    Google Scholar 

  5. De Jong KA (1975) An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph. dissertation, Univ. of Michigan, Ann Arbor, 1975.

    Google Scholar 

  6. Eshelman LJ, Schaffer JD (1991) Preventing premature convergence in genetic algorithms by preventing incest. In: R. Belew, L.B. Booker, (eds) Proc. of the Fourth Int. Conf. on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 115–122.

    Google Scholar 

  7. Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. In: L. Darrell Whitley (ed) Foundation of Genetic Algorithms 2. Morgan Kaufmann Publishers, San Mateo, 187–202.

    Google Scholar 

  8. Eshelman LJ, Mathias KE, Schaffer JD (1997) Convergence controlled variation. In: R. Belew, M. Vose, (eds) Foundations of Genetic Algorithms 4. Morgan Kaufmann, San Mateo, CA, 203–224.

    Google Scholar 

  9. Ghosh A, Tsutsui S, Tanaka H (1998) Function optimization in nonstationary environment using steady state genetic algorithms with aging of individuals. In: Proc. of the 1998 IEEE International Conference on Evolutionay Computation. IEEE Press, New York, 666–671.

    Google Scholar 

  10. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA.

    Google Scholar 

  11. Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms. In: G.J.E. Rawlins (ed) Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 69–93.

    Google Scholar 

  12. Griewangk AO (1981) Generalized descent of global optimization. Journal of Optimization Theory and Applications 34: 11–39.

    Article  MathSciNet  Google Scholar 

  13. Harik G (1995) Finding multimodal solutions using restricted tournament selection. In: Proc. 6th Int. Conf. Genetic Algorithms, L. J. Eshelman (Ed.), (Morgan Kaufmann, San Mateo, CA, 1995) 24–31.

    Google Scholar 

  14. Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artificial Intelligence Review 12(4): 265–319.

    Article  Google Scholar 

  15. Lee C-Y (2003) Entropy-boltzmann selection in the genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics 33(1): 138–149.

    Google Scholar 

  16. Li T-H, Lucasius CB, Kateman G (1992) Optimization of calibration data with the dynamic genetic algorithm. Analytica Chimica Acta 2768: 123–1342.

    Article  Google Scholar 

  17. Mahfoud SW (1992), Crowding and preselection revised. In: R. Männer, B. Manderick, (eds) Parallel Problem Solving from Nature 2. (Elsevier, Amsterdam, 27–36.

    Google Scholar 

  18. Mahfoud SW (1995) Niching methods for genetic algorithms. IlliGAL report 95001, University of Illinois at Urbana-Champaign, IL, Illinois Genetic Algorithms Laboratory.

    Google Scholar 

  19. Mori N, Yoshida J, Tamaki H, Kita H, Nichikawa Y (1995) A thermodynamical selection rule for genetic algorithms. In: Proc. of the 2nd IEEE Conference on Evolutionary Computation (ICEC’95). IEEE Press, New York, 188–192.

    Google Scholar 

  20. Mühlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the breeder genetic algorithm I. continuous parameter optimization. Evolutionary Computation 1: 25–49.

    Google Scholar 

  21. Schlierkamp-Voosen D, Mühlenbein H (1994) Strategy adaptation by competing subpopulations. In: Y. Davidor, H.-P. Schwefel, R. Männer (eds) Parallel Problem Solving from Nature 3. Springer-Verlag, Berlin, 199–208.

    Google Scholar 

  22. Schwefel H-P (1981) Numerical optimization of computer models. Wiley, Chichester.

    Google Scholar 

  23. Shimodaira H (1999) A diversity control oriented genetic algorithm (DCGA): development and experimental results. In: Proc. of the Genetic and Evolutionary Computation Conference 1999. Morgan Kaufmann, San Francisco, California, 603–611.

    Google Scholar 

  24. Storn R, Price K (1995) Differential evolution — a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA.

    Google Scholar 

  25. Thierens D (1997) Selection schemes, elitist recombination, and selection intensity. In: T. Bäck, (ed) Proc. of the Seventh Int. Conf. on Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo, 152–159.

    Google Scholar 

  26. Törn A, Antanas Ž (1989) Global optimization. Lecture Notes in Computer Science 350, Springer, Berlin.

    Google Scholar 

  27. Tsutsui S, Fujimoto Y (1993) Forking genetic algorithm with blocking and shrinking modes. In: S. Forrest (ed) Proc. of the Fifth Int. Conf. on Genetic Algorithms. Morgan Kaufmmann, San Mateo, CA, 206–213.

    Google Scholar 

  28. Vavak F, Fogarty TC (1996) Comparison of steady state and generational genetic algorithms for use in nonstationary environments. In: Proc. Of the 1996 IEEE International Conference on Evolutionary Computation. IEEE Press, New York, 192–195.

    Google Scholar 

  29. Vavak F (1997) Genetic algorithm based self-adaptive techniques for direct load balancing in nonstationary environments. PhD thesis, University of the West of England.

    Google Scholar 

  30. Whitley D. (1989), The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In: J. David Schaffer (ed) Proc. of the Third Int. Conf. on Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo, 116–121.

    Google Scholar 

  31. Whitley D, Beveridge R, Graves C, Mathias K (1995) Test driving three 1995 genetic algorithms: new test functions and geometric matching. Journal of Heuristics 1: 77–104.

    Google Scholar 

  32. Wiese K, Goodwin SD (1999) Convergence characteristics of keep-best reproduction. In: Selected Areas in Cryptography, 312–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lozano, M., Herrera, F., Cano, J.R. (2005). Replacement Strategies to Maintain Useful Diversity in Steady-State Genetic Algorithms. In: Hoffmann, F., Köppen, M., Klawonn, F., Roy, R. (eds) Soft Computing: Methodologies and Applications. Advances in Soft Computing, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32400-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-32400-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25726-4

  • Online ISBN: 978-3-540-32400-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics