Skip to main content

Semantic Model for Circular DNA-Based Memory

  • Conference paper
Soft Computing as Transdisciplinary Science and Technology

Part of the book series: Advances in Soft Computing ((AINSC,volume 29))

  • 875 Accesses

Abstract

DNA-based memories have the potential to store vast amount of information with high density. In this paper, a new DNA-based semantic model is proposed and described theoretically for DNA-based memories. This model, referred to as ‘semantic model based on molecular computing’ (SMC) has the structure of a graph formed by the set of all attribute-attribute value pairs contained in the set of represented objects, plus a tag node for each object. Each path in the network, from an initial object-representing tag node to a terminal node represents the object named on the tag. Object-representing circular dsDNAs will be formed via parallel self-assembly, from encoded ssDNAs representing attribute-attribute value pairs, as directed by ssDNA splinting strands representing relations in the network. The proposed semantic models are rather suitable for DNA-based memories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reif, J. H., LaBean, T. H., Pirrung, M., Rana, V. S., Guo, B., Kingsford, C., and Wickham, G. S.: Experimental Construction of Very Large Scale DNA Databases with Associative Search Capability, Proc. a DIMACS Workshop: DNA Based Computers, DIMACS27 (2002) 231–247

    Google Scholar 

  2. Adleman, L. M.: Molecular Computation of Solutions to Combinatorial Problems, Science 266 (1994) 583–585

    Article  Google Scholar 

  3. Adleman, L.M.: DNA Computing FAQ. http://www.usc.edu/dept/molecular-science/ (2004)

    Google Scholar 

  4. Quillian, M.R., and Minsky, M.: Semantic Memory, Semantic Information Processing, MIT Press, Cambridge, MA. (1968) 216–270

    Google Scholar 

  5. Baum, E. B.: How to Build an Associative Memory Vastly Larger than the Brain, Science 268 (1995) 583–585

    Article  Google Scholar 

  6. Arita, M., Hagiya, M., and Suyama, A.: Joining and Rotating Data with Molecules, Proc. of IEEE International Conference on Evolutionary Computation (1997) 243–248

    Google Scholar 

  7. Rief J. H.: Parallel Molecular Computation: Models and Simulations, Proc. of the 7th Annual Symaposium on Parallel Algorithms and Architectures (1995) 213–223

    Google Scholar 

  8. Chen, J., Deaton, R., and Wang, Y-Z.: A DNA-Based Memory with in Vitro Learning and Associative Recall, Proc. of a DIMACS Workshop: DNA Based Computers, DIMACS27 (2003)

    Google Scholar 

  9. Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.N., Goodman, M.F., Rothermund, P. W., and Adleman L. M.: A Sticker Based Model for DNA Computations, Journal of Computational Biology, Vol.268 (1998) 615–629

    Article  Google Scholar 

  10. Daton, R., Garzon, M., Murphy, R.C., Rose, J. A., Franceschetti, D.R., and Stevens, Jr, S.E.: Reliability and Efficiency of a DNA-Based Computation, Phys. Review Letters 80 (1998) 417–420

    Article  Google Scholar 

  11. Deaton, R., Murphy, C. R, Garzon, M., Franceschetti, D. R., and Stevens, Jr. S. E. (1999): Good Encodings for DNA-Based Solutions to Combinatorial Problems, Proc. DNA Based Computers DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.44 (1999) 247–258

    MathSciNet  Google Scholar 

  12. Rose, J. A., Deaton, R., Franceschetti, D., Garzon, M., and Stevens, Jr. S. E.: A Statistical Mechanical Treatment of Error in the Annealing Biostep of DNA Computation, Proc. of GECCO’99 (1999) 1829–1834

    Google Scholar 

  13. SantaLucia, J., Allawi, H., and Seneviratne, P: Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability, Biochemistry, Vol.35, No.11 (1996) 355–356

    Article  Google Scholar 

  14. Penchovsky, R. and Ackermann, J.: DNA Library Design for molecular computation, Journal of Computational Biology, Vol.10, No.2, (2003) 215–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsuboi, Y., Ibrahim, Z., Ono, O. (2005). Semantic Model for Circular DNA-Based Memory. In: Abraham, A., Dote, Y., Furuhashi, T., Köppen, M., Ohuchi, A., Ohsawa, Y. (eds) Soft Computing as Transdisciplinary Science and Technology. Advances in Soft Computing, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32391-0_127

Download citation

  • DOI: https://doi.org/10.1007/3-540-32391-0_127

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25055-5

  • Online ISBN: 978-3-540-32391-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics