Advertisement

Transition Modeling in FLOWer — Transition Prescription and Prediction

  • A. Krumbein
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 89)

Summary

This paper summarizes the developments of transition prescription and transition prediction techniques which were implemented into the DLR Reynolds-averaged Navier-Stokes (RANS) solver FLOWer in the framework of the DLR projects MEGAFLOW and MEGAFLOW II and the German research project MEGAFLOW. The very basic transition handling functionalities which FLOWer provided before the projects started were generalized in order to prescribe arbitrary transition lines on very complex aircraft geometries with different components, such as wings, fuselages or nacelles. A number of transition prediction methods were incorporated into the code and an infrastructure was built up in order to handle the underlying transition prediction strategy which results in an iteration process within the solution process of the RANS equations. Finally, physical models for the modeling of transitional flow were implemented and tested.

Keywords

Transition Location Transition Line Laminar Boundary Layer Transition Prediction RANS Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FLOWer. Installation and User Handbook, Release 116, Doc.Nr. MEGAFLOW-1001, Institut fur Entwurfsaerodynamik, Deutsches Zentrum fur Luft-und Raumfahrt e.V., 2000Google Scholar
  2. 2.
    Becker, K.; Kroll, N.; Rossow, C. C.; Thiele, F., “The MEGAFLOW project”, Aerosp. Sci. Technol. 4, 2000, pp. 223–237zbMATHCrossRefGoogle Scholar
  3. 3.
    Krumbein, A., “AVTAC Advanced Viscous Flow Simulation Tools for Complete Civil Aircraft Design-Transition Prescription and Prediction”, Deliverable Task 3.2, AVTAC/DEL/DLR/D3.2C5, 1999Google Scholar
  4. 4.
    Krumbein, A., Stock, H. W., “Laminar-turbulent Transition Modeling in Navier-Stokes Solvers using Engineering Methods”, ECCOMAS 2000, Barcelona (e), 11.–14. September 15 2000, ECCOMAS 2000-CD-Rom Proceedings, editor: International Center for Numerical Methods in Engineering (CIMNE), 2000, ISBN: 84-89925-70-4, Depósito Legal: B-37139-2000Google Scholar
  5. 5.
    HELIFUSE-Helicopter Fuselage Drag, Assessment report, Task 2. Navier-Stokes Calculations, Assessment of Blind Test Calculations, Deliverable of subtask 2.1, HELIFUSE/C/1/DLR/03/A, 1997Google Scholar
  6. 6.
    Wilcox, D. C., “Reassessment of the Scale-Determining Equation for Advanced Turbulence Models”, AIAA Journal, Vol.26, No. 11, 1988, pp. 1299–1310zbMATHMathSciNetGoogle Scholar
  7. 7.
    Becle, J. P., “Essai de la demi-maquette AS28 dans la soufflerie S1Ma. Partie Effets Reynolds et Partie TPS”, Rapport d’Études ONERA no. 0962GY100G et 3423 AY043G, 1985Google Scholar
  8. 8.
    Moir, I. R. M., “Measurements on a Two-Dimensional Aerofoil with High-Lift Devices”, AGARD Report No.303, pp. A2-1–A2-12, 1994Google Scholar
  9. 9.
    Wild, J. W., “Direct Optimization of Multi-Element-Airfoils for High-Lift using Navier-Stokes Equations”, Computational Fluid Dynamics 98, Proceedings of the Fourth European Computational Fluid Dynamics Conference, pp. 383, 1998Google Scholar
  10. 10.
    Radespiel, R., Graage, K., Brodersen, O., “Transition Predictions Using Reynolds-Averaged Navier-Stokes and Linear Stability Analysis Methods”, AIAA Paper 91-1641, 1991Google Scholar
  11. 11.
    Smith, A. M. O., Gamberoni, N., “Transition, Pressure Gradient and Stability Theory”, Douglas Aircraft Company, Long Beach, Calif. Rep. ES 26388, 1956Google Scholar
  12. 12.
    van Ingen, J. L., “A suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region”, University of Delft, Dept. of Aerospace Engineering, Delft, The Netherlands, Rep. VTH-74, 1956Google Scholar
  13. 13.
    Stock, H. W., Haase, W., “A Feasibility Study of e N Transition Prediction in Navier-Stokes Methods for Airfoils”, AIAA Journal, Vol.37, no. 10, 1999, pp. 1187–1196Google Scholar
  14. 14.
    Horton, H. P., Stock, H.W., “Computation of Compressible, Laminar Boundary Layers on Swept, Tapered Wings”, Journal of Aircraft, Vol.32, No. 6, 1995, pp.1402–1405Google Scholar
  15. 15.
    Stock, H. W., Degenhardt, E., “A simplified e N method for transition prediction in twodimensional, incompressible boundary layers”, Zeitung fur Flugwissenschaft und Weltraumforschung, Vol.13, 1989, pp.16–30Google Scholar
  16. 16.
    Warren, E. S., Hassan, H. A., “Transition Closure Model for Predicting Transition Onset”, Journal of Aircraft, Vol.35, 1998, pp. 769–775Google Scholar
  17. 17.
    Czerwiec, R. M., Edwards, J. R., Rumsey, C. L., Bertelrud, A., Hassan, H. A., “Study of High-Lift Configurations Using k-ζ Transition/Turbulence Model”, AIAA Paper 99-3186, 1999Google Scholar
  18. 18.
    Edwards, J. R., Roy, C. J., Blottner, F. G., Hassan, H. A., “Development of a One-Equation Transition/Turbulence Model”, AIAA Journal, Vol.39, no. 9, 2001, pp. 1691–1698Google Scholar
  19. 19.
    Casalis, G., Arnal, D., “ELFIN II Subtask 2.3: Database method. Development and validation of the simplified method for pure crossflow instability at low speed”, ELFIN II-European Laminar Flow Investigation, Technical Report no. 145, ONERA-CERT, Département d’Études et de Recherches en Aérothermodynamique (DERAT), R.T. DERAT no. 119/5618.16, 1996Google Scholar
  20. 20.
    Krumbein, A., “Coupling of the DLR Navier-Stokes Solver FLOWer with an e N-Database Method for laminar-turbulent Transition Prediction on Airfoils”, New Results in Numerical and Experimental Fluid Mechanics III, Notes on Numerical Fluid Mechanics-Vol.77, Berlin, Heidelberg, New York, Springer Verlag, 2002, pp. 92–99Google Scholar
  21. 21.
    Somers, D. A., “Design and Experimental Results for a Natural-Laminar Flow Airfoil for General Aviation Applications”, NASA Technical Paper 1861, Scientific and Technical Information Branch, 1981Google Scholar
  22. 22.
    Baldwin, B. S., Lomax, H., “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows”, AIAA Paper 78-257, 1978Google Scholar
  23. 23.
    Stock, H. W., “Airfoil Validation Using Coupled Navier-Stokes and e N Transition Prediction Methods”, Journal of Aircraft, Vol.39, No. 1, 2002, pp.51–58CrossRefGoogle Scholar
  24. 24.
    Mignosi, A., “Fundamental Reflections on Cryogenic Testing”, AGARD Report No.722, 16 1985, pp. 7-1–7-25Google Scholar
  25. 25.
    Arthur, M. T., Dol, H., Krumbein, A., Houdeville, R., Ponsin, J., “Application of Transition Criteria in Navier-Stokes Computations”, GARTEUR AD(AG35), TP-137, 2003Google Scholar
  26. 26.
    Schmitt, V., Charpin, F., “Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers”, AGARD Advisory Report No.138, 1979, pp. B1-1. B1-44Google Scholar
  27. 27.
    Stock, H. W., Haase, W., “Navier-Stokes Airfoil Computations with e N Transition Prediction Including Transitional Flow Regions”, AIAA Journal, Vol.38, no. 11, 2000, pp. 2059–2066Google Scholar
  28. 28.
    Walker, G. J., “Transitional Flow on Axial Turbomachine Blading”, AIAA Journal, Vol.27, No. 5, 1989, pp. 595–602Google Scholar
  29. 29.
    Dhawan, S., Narasimha, R., “Some properties of boundary layer flow during the transition from laminar to turbulent motion”, Journal of Fluid Mechanics, Vol.3, 1958, pp. 418–436zbMATHCrossRefGoogle Scholar
  30. 30.
    Krumbein, A., “On Modeling of Transitional Flow and its Application to a High Lift Multielement Airfoil Configuration”, AIAA Paper 2003-724, 2003 (accepted at Journal of Aircraft)Google Scholar
  31. 31.
    Dargel, G., Schnieder, H., “GARTEUR AD (AG08) Final Report”, GARTEUR High Lift Action Group AD (AG08), TP043, MBB Transport-und Verkehrsflugzeuge, Bremen, 1989Google Scholar
  32. 32.
    Thibert, J. J., “The GARTEUR High Lift Research Programme”, AGARD Conference Proceedings 515-High-Lift System Aerodynamics, 1993, pp. 16-1–16-21Google Scholar
  33. 33.
    Brodersen, O., Ronzheimer, A., Ziegler, R., Kunert, T., Wild, J., Hepperle, M., “Aerodynamic Applications using MegaCads”, Proc. of 6th International Conference on Numerical Grid Generation in Computational Field Simulation, editor: M. Cross, publisher: ISGG, NSF Eng. Research Center, Mississippi State University, 1998, pp. 793–802Google Scholar
  34. 34.
    Edwards, J.R., Chandra, S., “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields”, AIAA Journal, Vol.34, No. 4, 1996, pp. 756–763CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Krumbein
    • 1
  1. 1.DLRInstitute of Aerodynamics and Flow TechnologyBraunschweig

Personalised recommendations