Advertisement

Aerodynamic Analysis of Flapping Airfoil Propulsion at Low Reynolds Numbers

  • Jan Windte
  • Rolf Radespiel
  • Matthias Neef
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 89)

Summary

The laminar flow around a NACA 4402 airfoil is investigated at a Reynolds number of Re = 6000 using the RANS solver FLOWer. Significant flow separation occurs over almost the whole regime of angles of attack for steady onset flow conditions. Therefore, the calculated propulsive efficiencies of pure plunge motions are rather poor. This leads to the need of a combined plunge and pitch motion, which is investigated subsequently. For combined motions, cases with high propulsive efficiencies are found over a wide range of produced thrust.

Keywords

Chord Length Pitch Motion Laminar Separation Bubble Combine Motion Lift Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Neef, D. Hummel: “Euler Solutions for a Finite-Span Flapping Wing”. Proceedings of the Conference: Fixed, Flapping and Rotatory Wing Vehicles at Very Low Reynolds Numbers. Notre Dame, 2000, pp. 75–99.Google Scholar
  2. 2.
    M.F. Neef: “Analyse des Schlagflugs durch numerische Strömungsberechnung”. Dissertation TU Braunschweig 2002, ZLR Forschungsbericht 2002-02. www.biblio.tu-bs.de/ediss/data/20021021a/20021021a.html.Google Scholar
  3. 3.
    J.M. Grasmeyer, M.T. Keenon: “Development of the Black Widow Micro Air Vehicle”. AIAA-2001-0127.Google Scholar
  4. 4.
    T. Pornsin-Sisirak, Y.C. Tai, C.M. Ho, M. Keennon: “ Microbat-A Palm-Sized Electrically Powered Ornithopter”. 2001 NASA/JPL Workshop on Biomorphic Robotics, Pasadena, CA, USA, Aug. 14–16(2000).Google Scholar
  5. 5.
    K.D. Jones, M.F. Platzer: “Experimental Investigation of the Aerodynamic Characteristics of Flapping-Wing Micro Air Vehicles”. 41st Aerospace Science Meeting & Exhibit, 6–9 January 2003 / Reno, NV, AIAA-2003-0418.Google Scholar
  6. 6.
    NASG (Nihon univ. Aero Student Group)’s HomePage. http://www.nasg.com/afdb/show-airfoil-e.phtml?id=1075Google Scholar
  7. 7.
    J. Kunz, I. Kroo: “Analysis, Design and Testing of Airfoils for Use at Ultra-Low Reynolds Numbers”. Proceedings of the Conference: Fixed, Flapping and Rotatory Wing Vehicles at Very Low Reynolds Numbers, Notre Dame, 2000, pp. 349–372.Google Scholar
  8. 8.
    P. Aumann, W. Bartelheimer, H. Bleecke, M. Kuntz, J. Lieser, E. Monsen, B. Eisfeld, J. Fassbender, R. Heinrich, N. Kroll, M. Mauss, J. Raddatz, U. Reisch, B. Roll, T. Schwarz: “FLOWer Installation and User Handbook, Release 116”. DLR Braunschweig, Doc.-Nr. MEGAFLOW-1001, Apr.2000.Google Scholar
  9. 9.
    K. Pahlke: “Berechnung von Strömungsfeldern um Hubschrauberrotoren im Vorwärtsflug durch die Lösung der Euler-Gleichungen”. Dissertation TU Braunschweig 1999, DLR Forschungsbericht FB 99-22.Google Scholar
  10. 10.
    K.D. Jones, B.M. Castro, O. Mahmoud, S.J. Pollard, M.F. Platzer, M.F. Neef, K. Gonet, D. Hummel: “A Collaborative Numerical and Experimental Investigation of Flapping-Wing Propulsion”. AIAA Paper 2002-0706 (2002).Google Scholar
  11. 11.
    H.G. Küssner: “Zusammenfassender Bericht über den instationären Auftrieb von Flügeln”. Luftfahrtforschung 13, 1936, S. 410–424.zbMATHGoogle Scholar
  12. 12.
    W. Send: “Otto Lilienthal und der Mechanismus des Schwingenfluges”. Jahrbuch 1996 I der deutschen Gesellschaft für Luft und Raumfahrt — Lilienthal-Oberth e.V., 1996, S. 161–172.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jan Windte
    • 1
  • Rolf Radespiel
    • 1
  • Matthias Neef
    • 1
  1. 1.Institute of Fluid MechanicsTechnical University BraunschweigBraunschweigGermany

Personalised recommendations