Block Structured Navier-Stokes Solver FLOWer

  • Jochen Raddatz
  • Jens K. Fassbender
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 89)


This paper comprises the developments of the block structured Navier-Stokes solver FLOWer during the DLR project MEGAFLOW II. At first the status of the FLOWer code including its numerical and physical capabilities at the end of MEGAFLOW II is presented. After introducing the objectives of the FLOWer development for MEGAFLOW II the major developments and corresponding results are discussed.


Turbulence Equation Hanging Node RANS Equation Dual Time Constant Time Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Gauger and J. Brezillon: “The Continuous Adjoint Approach in Aerodynamic Shape Optimization”, this volume.Google Scholar
  2. 2.
    J. Brezillon: “Application of the Adjoint Technique with the Optimization Framework Synaps”, this volume.Google Scholar
  3. 3.
    J. Sidès and K. Pahlke: “Progress Towards the CFD Computation of the Complete Helicopter: Recent Results Obtained by Research Centers in the Framework of the Franco-German CHANCE Project”, CEAS Aerospace Aerodynamics Research Conference, 10–12 June 2002, Cambridge, UK.Google Scholar
  4. 4.
    N. Kroll, R. Radespiel and C.C. Rossow: “Accurate and Efficient Flow Solvers for 3D Applications on Structured Meshes”, AGARD R-807, 4.1–4.59, 1995.Google Scholar
  5. 5.
    P. Aumann, H. Barnewitz, H. Schwarten, K. Becker, R. Heinrich, B. Roll, M. Galle, N. Kroll, Th. Gerhold, D. Schwamborn and M. Franke: “MEGAFLOW: Parallel Complete Aircraft CFD”, Parallel Computing, Vol. 27, pp. 415–440, 2001.zbMATHCrossRefGoogle Scholar
  6. 6.
    R. Heinrich, R. Ahrem, G. Günther, H.P. Kersken, W. Krüger and J. Neumann: “Aeroelastic Computation Using the AMANDA Simulation Environment”, Proceedings of CEAS Conference on Mulitdisciplinary Aircraft Design and Optimization, 25–26 June 2001, Cologne, Germany.Google Scholar
  7. 7.
    K. Pahlke and B. v.d. Wall: “Progress in Weak Fluid-Structure-Coupling for Multibladed Rotors in High-Speed Forward Flight”, 28th European Rotorcraft Forum, Paper 67, Bristol, UK, 2002.Google Scholar
  8. 8.
    B. Eisfeld: “Turbulence Models in FLOWer”, this volume.Google Scholar
  9. 9.
    D.C. Wilcox: “Reassessment of the Scale-Determination Equation for Advanced Turbulence Models”, AIAA J., Vol. 26(11), pp. 1299–1310, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    T. Rung, H. Lübcke, M. Franke, L. Xue, F. Thiele and S. Fu: “Assessment of Explicit Algebraic Stress Models in Transonic Flows”, Proceedings of the 4th Symposium on Engineering Turbulence Modeling and Measurements, France, pp. 659–668, 1999.Google Scholar
  11. 11.
    M. Rakowitz, M. Sutcliffe, B. Eisfeld, D. Schwamborn, H. Bleecke and J. Fassbender: “Structured and Unstructured Computations on the DLR-F4Wing-Body Configuration”, AIAA Paper 2002-0837, 2002.Google Scholar
  12. 12.
    J.C. Kok and F.J. Brandsma: “Turbulence Model Based Vortical Flow Computations for a Sharp Edged Delta Wing in Transonic Flow Using the Full Navier-Stokes Equations”, NLR-CR-2000-342, 2000.Google Scholar
  13. 13.
    S. Wallin and A.V. Johansson: “An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows”, J. Fluid Mech., Vol. 403, pp. 89–132, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Krumbein: “Transition Modeling in FLOWer — Transition Prescription and Prediction”, this volume.Google Scholar
  15. 15.
    J.K. Fassbender: “Improved Robustness for Numerical Simulation of Turbulent Flows around Civil Transport Aircraft at Flight Reynolds Numbers”, Doctoral thesis, DLR research report DLR-FB 2003-09 (ISSN 1434-8454).Google Scholar
  16. 16.
    R.W. MacCormack: “A New Implicit Algorithm for Fluid Flow”, AIAA Paper 97-2100, 1997.Google Scholar
  17. 17.
    J. A. Benek, J. L. Steger and F. C. Dougherty: “A Flexible Grid Embedding Technique with Application to the Euler Equations”, AIAA Paper 83-1944, 1983.Google Scholar
  18. 18.
    T. Schwarz: “Development of a Wall Treatment for Navier-Stokes Computations using the Overset-Grid Technique”, 26th European Rotorcraft Forum, The Hague, The Netherlands, 26–29 Sep. 2000.Google Scholar
  19. 19.
    J. Bonet and J. Peraire: “An Alternating Digital Tree (ADT) Algorithm for 3D Geometric Searching an Intersection Problems”, International Journal for Numerical Problems in Engineering, Vol. 31, pp. 1–17, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Jameson: “Time Dependent Calculation Using Multigrid with Applications to Unsteady Flow past Airfoils and Wings”, AIAA Paper 91-1596, 1991.Google Scholar
  21. 21.
    R. Heinrich and H. Bleecke: “Simulation of Unsteady Three Dimensional Viscous Flows Using a Dual Time Stepping Method”, Notes on Numerical Fluid Mechanics, Vol. 60, pp. 15–23, Vieweg Verlag, 1997.Google Scholar
  22. 22.
    P. Rogiest, M. Delanaye and J.A. Essers: “Implicit Computations of Unsteady Separated Flows with a Quadratic Reconstruction Scheme”, AIAA Paper 95-1734, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jochen Raddatz
    • 1
  • Jens K. Fassbender
    • 1
  1. 1.DLRInstitute of Aerodynamics and Flow TechnologyBraunschweig

Personalised recommendations