Transition Prediction for 2D and 3D Flows using the TAU-Code and N-Factor Methods

  • C. Nebel
  • R. Radespiel
  • R. Haas
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 89)


The 3D Navier-Stokes solver TAU is coupled with linear stability analysis methods in order to predict flows including transition due to Tollmien-Schlichting (TS) and crossflow (CF) instabilities. The new simulation capability is investigated for an airfoil and compared with data of 2D boundary layer methods that include transition prediction based on a well-known envelope method and with experiments. The results indicate the levels of grid and residual convergence needed for accurate transition prediction. First applications of transition prediction in 3D for a 1:6 prolate spheroid are discussed. It is shown that transition calculations for fully 3D flows are numerical feasible and yield physically reasonable results for moderate angles of attack.


Boundary Layer Transition Location Integration Path Transition Prediction Prolate Spheroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Gerhold, M. Galle, O. Friedrich, J. Evans: “Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU-Code”, AIAA paper 97-0167 (1997).Google Scholar
  2. 2.
    H.-W. Stock, E. Degenhart: “A Simplified en Method for Transition Prediction in Two-Dimensional, Incompressible Boundary Layers”, Z. Flugwiss. Weltraumforsch. 13 (1989) pp. 16–30.Google Scholar
  3. 3.
    G. Casalis, D. Arnal: “Database method — Development and validation of the simplified method for pure crossflow instability at low speed”, ELFIN II Technical Report No. 145, ONERA CERT, (1996).Google Scholar
  4. 4.
    H.-W. Stock, H.P. Horton: Ein Integralverfahren zur Berechnung dreidimensionaler, laminarer, kompressibler, adiabater Grenzschichten. Z. Flugwiss. Weltraumforsch. 9, Heft 2(1985) pp. 101–110.zbMATHGoogle Scholar
  5. 5.
    D.M. Somers: “Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications”, NASA Technical Paper 1861 (1981).Google Scholar
  6. 6.
    M. Drela: XFOIL: “An Analysis and Design System for Low Reynolds Number Airfoils”, in T.J. Mueller (Editor): Low Reynolds Number Aerodynamics, Springer Verlag (1989) pp. 1–12.Google Scholar
  7. 7.
    H.U. Meier, H.-P. Kreplin: “Experimental Investigation of the Boundary Layer Transition and Separation on a Body of Revolution”, Z. Flugwiss. Weltraumforsch. 4, Heft 2 (1980) pp.65–71.Google Scholar
  8. 8.
    H.U. Meier, H.-P. Kreplin: “Boundary Layer Separation Due to “weak” and “strong” Viscous-Inviscid Interaction on an Inclined Body of Revolution”, In. AFWAL Viscous and Interacting Flow Field Effects (1984) pp. 79–96.Google Scholar
  9. 9.
    F. Menter, H.-P. Kreplin: “Stability Analysis with the e N-Method for the Prolate Spheroid at Zero Angle of Attack”, IB222-88 A28, DFVLR-AVA Göttingen (1988).Google Scholar
  10. 10.
    D. Arnal: Boundary Layer Transition: “Predictions based on Linear Theory”, AGARD-VKI Special Course on “Progress in Transition Modelling”, AGARD Report 793 (1994).Google Scholar
  11. 11.
    H. Schlichting, K. Gersten: “Boundary Layer Theory”, 8th ed. 2000, Springer, Berlin, Heidelberg, New York (2001).Google Scholar
  12. 12.
    H.-W. Stock: “Determination of Length Scales in Algebraic Turbulence Models for Navier-Stokes Methods”, AIAA Journal, Vol. 27, No. 1 (1989) pp. 5–14.CrossRefGoogle Scholar
  13. 13.
    H.-W. Stock, W. Haase: “Feasibility Study of e N Transition Prediction in Navier-Stokes Methods for Airfoils”, AIAA Journal, Vol. 37, No. 10, October 1999.Google Scholar
  14. 14.
    I.A. Sadarjoen, T. van Walsum, A.J.S. Hin, F.H. Post: “Particle Tracing Algorithms for 3D Curvilinear Grids”, in G. Nielson, H. Müller, H. Hagen (Editors): Scientific Visualization — Overviews, Methologies and Techniques, IEEE (1997) pp. 299–332.Google Scholar
  15. 15.
    C. Nebel, R. Radespiel, T. Wolf: “Transition prediction for 3D flows using a Reynolds-averaged Navier-Stokes code and N-factor methods”, AIAA-Paper No. 2003-3593, (2003).Google Scholar
  16. 16.
    Centaursoft: Centaur. Scholar
  17. 17.
    K. Maruhn: “Druckverteilungen an elliptischen Rümpfen und in ihrem Außnraum”, Jahrbuch der deutschen Luftfahrtforschung (1941) pp. 135–147.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Nebel
    • 1
  • R. Radespiel
    • 1
  • R. Haas
    • 1
  1. 1.Institute of Fluid MechanicsBraunschweig Technical UniversityBraunschweigGermany

Personalised recommendations