Skip to main content

Transition Prediction for 2D and 3D Flows using the TAU-Code and N-Factor Methods

  • Conference paper
Book cover MEGAFLOW - Numerical Flow Simulation for Aircraft Design

Summary

The 3D Navier-Stokes solver TAU is coupled with linear stability analysis methods in order to predict flows including transition due to Tollmien-Schlichting (TS) and crossflow (CF) instabilities. The new simulation capability is investigated for an airfoil and compared with data of 2D boundary layer methods that include transition prediction based on a well-known envelope method and with experiments. The results indicate the levels of grid and residual convergence needed for accurate transition prediction. First applications of transition prediction in 3D for a 1:6 prolate spheroid are discussed. It is shown that transition calculations for fully 3D flows are numerical feasible and yield physically reasonable results for moderate angles of attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Gerhold, M. Galle, O. Friedrich, J. Evans: “Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU-Code”, AIAA paper 97-0167 (1997).

    Google Scholar 

  2. H.-W. Stock, E. Degenhart: “A Simplified en Method for Transition Prediction in Two-Dimensional, Incompressible Boundary Layers”, Z. Flugwiss. Weltraumforsch. 13 (1989) pp. 16–30.

    Google Scholar 

  3. G. Casalis, D. Arnal: “Database method — Development and validation of the simplified method for pure crossflow instability at low speed”, ELFIN II Technical Report No. 145, ONERA CERT, (1996).

    Google Scholar 

  4. H.-W. Stock, H.P. Horton: Ein Integralverfahren zur Berechnung dreidimensionaler, laminarer, kompressibler, adiabater Grenzschichten. Z. Flugwiss. Weltraumforsch. 9, Heft 2(1985) pp. 101–110.

    MATH  Google Scholar 

  5. D.M. Somers: “Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications”, NASA Technical Paper 1861 (1981).

    Google Scholar 

  6. M. Drela: XFOIL: “An Analysis and Design System for Low Reynolds Number Airfoils”, in T.J. Mueller (Editor): Low Reynolds Number Aerodynamics, Springer Verlag (1989) pp. 1–12.

    Google Scholar 

  7. H.U. Meier, H.-P. Kreplin: “Experimental Investigation of the Boundary Layer Transition and Separation on a Body of Revolution”, Z. Flugwiss. Weltraumforsch. 4, Heft 2 (1980) pp.65–71.

    Google Scholar 

  8. H.U. Meier, H.-P. Kreplin: “Boundary Layer Separation Due to “weak” and “strong” Viscous-Inviscid Interaction on an Inclined Body of Revolution”, In. AFWAL Viscous and Interacting Flow Field Effects (1984) pp. 79–96.

    Google Scholar 

  9. F. Menter, H.-P. Kreplin: “Stability Analysis with the e N-Method for the Prolate Spheroid at Zero Angle of Attack”, IB222-88 A28, DFVLR-AVA Göttingen (1988).

    Google Scholar 

  10. D. Arnal: Boundary Layer Transition: “Predictions based on Linear Theory”, AGARD-VKI Special Course on “Progress in Transition Modelling”, AGARD Report 793 (1994).

    Google Scholar 

  11. H. Schlichting, K. Gersten: “Boundary Layer Theory”, 8th ed. 2000, Springer, Berlin, Heidelberg, New York (2001).

    Google Scholar 

  12. H.-W. Stock: “Determination of Length Scales in Algebraic Turbulence Models for Navier-Stokes Methods”, AIAA Journal, Vol. 27, No. 1 (1989) pp. 5–14.

    Article  Google Scholar 

  13. H.-W. Stock, W. Haase: “Feasibility Study of e N Transition Prediction in Navier-Stokes Methods for Airfoils”, AIAA Journal, Vol. 37, No. 10, October 1999.

    Google Scholar 

  14. I.A. Sadarjoen, T. van Walsum, A.J.S. Hin, F.H. Post: “Particle Tracing Algorithms for 3D Curvilinear Grids”, in G. Nielson, H. Müller, H. Hagen (Editors): Scientific Visualization — Overviews, Methologies and Techniques, IEEE (1997) pp. 299–332.

    Google Scholar 

  15. C. Nebel, R. Radespiel, T. Wolf: “Transition prediction for 3D flows using a Reynolds-averaged Navier-Stokes code and N-factor methods”, AIAA-Paper No. 2003-3593, (2003).

    Google Scholar 

  16. Centaursoft: Centaur. http://www.centaursoft.com.

    Google Scholar 

  17. K. Maruhn: “Druckverteilungen an elliptischen Rümpfen und in ihrem Außnraum”, Jahrbuch der deutschen Luftfahrtforschung (1941) pp. 135–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nebel, C., Radespiel, R., Haas, R. (2005). Transition Prediction for 2D and 3D Flows using the TAU-Code and N-Factor Methods. In: Kroll, N., Fassbender, J.K. (eds) MEGAFLOW - Numerical Flow Simulation for Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 89. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32382-1_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-32382-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24383-0

  • Online ISBN: 978-3-540-32382-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics