Large-Eddy Simulation of Attached Airfoil Flow

  • Qinyin Zhang
  • Matthias Meinke
  • Wolfgang Schröder
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 89)


A Large-eddy simulation version of the FLOWer code is introduced to compute attached flow around a quasi three-dimensional airfoil at a Mach number Ma = 0.088, Reynolds number Re = 8 × 105, and an angle of attack of 3.3°. For the treatment of the subgrid-scale stresses the MILES approach is chosen. The visualization of instantaneous flow fields shows the typical flow features such as the streaky structures in the near-wall region to be well resolved and the overall agreement of the computational results with experimental data to be satisfactory.


Mach Number Chord Length Spanwise Direction Adverse Pressure Gradient Subgrid Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Boris, F. F. Grinstein, E. S. Oran, R. L. Kolbe: “New Insights into Large Eddy Simulation”. Fluid Dynamics Research. 10, 1992, pp. 199–228.CrossRefGoogle Scholar
  2. 2.
    G.S. Cardell: “Flow past a circular cylinder with a permeable splitter plate”. PhD thesis, Graduate Aeronautical Lab., California Inst. of Technology, 1993.Google Scholar
  3. 3.
    S. Dahlström, L. Davidson: “Large Eddy Simulation of the Flow Around an Airfoil”. AIAA Pap. 2001-0425, 2001.Google Scholar
  4. 4.
    M. S. Liou, Ch. J. Steffen Jr.: “A New Flux Splitting Scheme”. J. Comp. Phys. 107, 1993, pp. 23–39.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Mary, P. Sagaut: “Large Eddy Simulation of Flow Around an Airfoil Near Stall”. AIAA J. 40(6), 2002, pp. 1139–1145.CrossRefGoogle Scholar
  6. 6.
    M. Meinke, W. Schröder, E. Krause, Th. Rister: “A Comparison of Second-and Sixth-Order Methods for Large-Eddy Simulations”. Computers and Fluids. 31, 2002, pp. 695–718.zbMATHCrossRefGoogle Scholar
  7. 7.
    C.P. Mellen, J. Fröhlich, W. Rodi: “Lessons from the European LESFOIL project on LES of flow around an airfoil”. AIAA Pap. 2002-0111, 2002.Google Scholar
  8. 8.
    C. Norberg: “Effects of Reynolds number and low-intensity free stream turbulence on the flow around a circular cylinder”. Publ. No. 87/2, Dept. of Applied Thermoscience and Fluid Mech. Chalmers University of Technology, Gothenburg, Sweden, 1987.Google Scholar
  9. 9.
    T. J. Poinsot, S. K. Lele: “Boundary Conditions for Direct Simulations of Compressible Viscous Flows”. J. Comp. Phys. 101, 1992, pp. 104–129.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Son and T.J. Hanratty: “Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5× 103 to 105”. J. Fluid Mech. 35, 1969, pp. 353–368.CrossRefGoogle Scholar
  11. 11.
    W. Würz, S. Guidati, S. Herr: “Aerodynamische Messungen im Laminarwindkanal im Rahmen des DFG-Forschungsprojektes SWING+ Testfall 1”. Inst. für Aerodynamik und Gasdynamik, Universität Stuttgart, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Qinyin Zhang
    • 1
  • Matthias Meinke
    • 1
  • Wolfgang Schröder
    • 1
  1. 1.Institute of AerodynamicsAachen UniversityAachenGermany

Personalised recommendations