Advanced Turbulence Modelling in Aerodynamic Flow Solvers

  • Martin Franke
  • Thomas Rung
  • Frank Thiele
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 89)


In the aerodynamic industrial design process, the use of numerical simulation is of ever increasing importance. In order to adequately capture flow features such as pressure-induced separation or shock-boundary-layer interaction, an appropriate representation of turbulence is needed. This contribution summarizes the efforts undertaken at TU Berlin to develop, implement and validate advanced linear and non-linear models in the aerodynamic flow solvers FLOWer and TAU in the framework of MEGAFLOW and related projects. The accuracy of the approaches is discussed on various cases and statements with respect to their computational performance are given. The results indicate that improved predictive accuracy can be obtained from advanced Eddy-Viscosity Models at a moderate computational surplus.


Computational Fluid Dynamics Turbulence Modelling Suction Side Transonic Flow Surface Pressure Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Vos, A. Rizzi, D. Darracq, E.H. Hirschel: Navier-Stokes Solvers in European Aircraft Design. Progress in Aerospace Sciences 38(8), 2002, pp. 601–697.CrossRefGoogle Scholar
  2. 2.
    P.A. Durbin: A Perspective on Recent Developments in RANS Modeling. In: W. Rodi, N. Fueyo (Eds.): Engineering Turbulence Modelling and Experiments 5, Elsevier, Amsterdam, 2002, pp. 3–16.Google Scholar
  3. 3.
    D.C. Wilcox: Turbulence Modeling for CFD. DCW Industries, Inc., La Cañada, CA, USA, 1993.Google Scholar
  4. 4.
    F.R. Menter: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32(8), 1994, pp. 1598–1605.CrossRefGoogle Scholar
  5. 5.
    P.R. Spalart: Trends in Turbulence Treatments. AIAA Paper 2000-2306, Fluids 2000, Denver, USA, 2000.Google Scholar
  6. 6.
    T. Rung, F. Thiele: Computational Modelling of Complex Boundary-Layer Flows. In: Proc. 9th Intl. Symposium on Transport Phenomena in Thermal-Fluid Engineering, Singapore, 1996.Google Scholar
  7. 7.
    T. Rung, H. Lübcke, M. Franke, L. Xue, F. Thiele, S. Fu: Assessment of Explicit Algebraic Stress Models in Transonic Flows. In: W. Rodi, D. Laurence (Eds.): Engineering Turbulence Modelling and Experiments 4, Elsevier, Amsterdam, 1999, pp. 659–668.Google Scholar
  8. 8.
    S. Wallin, A:V. Johannson: An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows. Journal of Fluid Mechanics 403, 2000, pp. 89–132.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Wallin: An Efficient Explicit Algebraic Reynolds Stress κ-ω Model (EARSM) for Aeronautical Applications. FFA TN 1999-71, 1999. In: S. Wallin: Engineering Turbulence Modelling for CFD with a Focus on Explicit Algebraic Reynolds Stress Models. Dissertation, KTH Stockholm, 2000.Google Scholar
  10. 10.
    J.C. Kok: Resolving the Dependence on Free-Stream Values for the κ-ω Turbulence Model. AIAA Journal 38(7), 2000, pp. 1292–1295.Google Scholar
  11. 11.
    P.R. Spalart, S.R. Allmaras: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA-Paper 92-0439, 30th AIAA Aerospace Sciences Meeting, Reno, USA, 1992.Google Scholar
  12. 12.
    U. Bunge, T. Rung, M. Schatz, F. Thiele: Restatement of the Spalart-Allmaras Eddy-Viscosity Model in a Strain-Adaptive Formulation. To be published as a Technical Note in the AIAA Journal, 2003.Google Scholar
  13. 13.
    M. Franke, T. Rung, E. Elsholz, P. Aumann, F. Thiele: Numerical Simulation of Three-Dimensional Transonic Flows Using Advanced Turbulence-Transport Models. In: W. Nitsche, H.-J. Heinemann, R. Hilbig (Eds.): New Results in Numerical and Experimental Fluid Dynamics II, Notes on Numerical Fluid Mechanics, Vol. 72, Vieweg, Braunschweig, 1999, pp. 154–161.Google Scholar
  14. 14.
    E. Monsen, M. Franke, T. Rung, P. Aumann, A. Ronzheimer: Assessment of Advanced Transport-Equation Turbulence Models for Aircraft Aerodynamic Performance Prediction. AIAA Paper 99-3701, 30th AIAA Fluid Dynamics Conference, Norfolk, USA, 1999.Google Scholar
  15. 15.
    M. Franke, T. Rung, M. Schatz, F. Thiele: Numerical Simulation of High-Lift Flows Employing Improved Turbulence Modelling. ECCOMAS 2000, 11.–14.9.2000, Barcelona, Spain.Google Scholar
  16. 16.
    M. Franke: Untersuchung zum Potential höherwertiger Turbulenzmodelle für den aerodynamischen Entwurf. Dissertation, TU Berlin, 2003.Google Scholar
  17. 17.
    P.H. Cook, M.A. McDonald, M.C.P. Firmin: Aerofoil RAE 2822 — Pressure Distributions and Boundary Layer and Wake Measurements. In: AGARD AR-138, 1979.Google Scholar
  18. 18.
    R. Rudnik: Untersuchung der Leistungsfähigkeit von Zweigleichungs-Turbulenzmodellen bei Profilumströmungen. DLR Forschungsbericht 97-49, Cologne, 1997.Google Scholar
  19. 19.
    A. Gould, J.-C. Courty, M. Sillen, E. Elsholz, A. Abbas: The AVTAC Project — A Review of European Aerospace CFD. ECCOMAS 2000, 11.–14.9.2000, Barcelona, Spain.Google Scholar
  20. 20.
    K.D. Squires, J.R. Forsythe, S.A. Morton, W.Z. Strang, K.E. Wurtzler, R.F. Tomaro, M.J. Grismer, P.R. Spalart: Progress on Detached-Eddy Simulation of Massively Separated Flows. AIAA Paper 2002-1021, 40th AIAA Aerospace Sciences Meeting, Reno, USA, 2002.Google Scholar
  21. 21.
    H. Grotjans, F.R. Menter: Wall Functions for General Application CFD Codes. In: Papailiou K.D. et al.: Computational Fluid Dynamics’ 98, Proc. Fourth European Computational Fluid Dynamics Conference, Athens, Greece; Wiley, Chichester, 1998, pp. 1112–1117.Google Scholar
  22. 22.
    P. Eliasson, S. Wallin: A Robust and Positive Scheme for Viscous, Compressible Steady State Solutions with Two-Equation Turbulence Models. FFA TN 1999-81, 1999. In: S. Wallin: Engineering Turbulence Modelling for CFD with a Focus on Explicit Algebraic Reynolds Stress Models. Dissertation, KTH Stockholm, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martin Franke
    • 1
  • Thomas Rung
    • 1
  • Frank Thiele
    • 1
  1. 1.Hermann-Föttinger-Institute of Fluid MechanicsTU BerlinBerlinGermany

Personalised recommendations