Advertisement

Verification of MEGAFLOW-Software for High Lift Applications

  • S. Melber-Wilkending
  • R. Rudnik
  • A. Ronzheimer
  • T. Schwarz
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 89)

Summary

This part of the MEGAFLOW project is concerned with the numerical simulation of the viscous compressible flow around transport aircraft high lift configurations and its validation against wind tunnel experiments. The investigations are based on the solution of the Reynolds-averaged Navier-Stokes equations (RANS) using the MEGAFLOW code system with a finite volume parallel solution algorithm. Both the block-structured (FLOWer) and the unstructured (TAU) code modules are used for this task. Based on the high lift configurations DLR-ALVAST and DLR-F11 lift polars are computed with both codes and compared against each other and against measurements. Further on the structured Chimera technique implemented in FLOWer is applied to a high lift configuration.

Keywords

Grid Resolution Unstructured Grid Grid Generation Wind Tunnel Experiment Maximum Lift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, S. E., Wiltberger, N. L., Kwak, D.: “Efficient Simulation of Incompressible Viscous Flow over Multi-Element Airfoils.” AGARD-CP-515, pp. 7-1–7-9, 1993.Google Scholar
  2. 2.
    Larsson, T.: “Separated And High-Lift Flows Over Single And Multi-Element Airfoils.” ICAS-94-5.7.3, pp. 2505–2518, 1994.Google Scholar
  3. 3.
    Lindblad, I. A. A., de Cock, K. M. J.: “CFD Prediction of Maximum Lift of a 2D High Lift Configuration.” AIAA-paper 99-3180, 1999.Google Scholar
  4. 4.
    Rudnik, R.; Ronzheimer, A.; Raddatz, J.: “Numerical Flow Simulation for a Wing/Fuselage Transport Configuration with Deployed High Lift system” in Notes on Numerical Fluid Mechanics, Vol. 72, pp. 363–370, Vieweg-Verlag, Braunschweig/Wiesbaden, 1999.Google Scholar
  5. 5.
    Rudnik, R.; Melber, S.; Ronzheimer, A.; Brodersen, O.: “Three-Dimensional Navier-Stokes Simulations for Transport Aircraft High Lift Configurations.” Journal of Aircraft, Vol. 38, pp.895–903, 2001.CrossRefGoogle Scholar
  6. 6.
    Melber, S.; Rudnik, R.; Ronzheimer, A.: “Structured and Unstructured Numerical Simulation in High Lift Aerodynamics.” Workshop on EU-Research on Aerodynamic Engine / Aircraft Integration for Transport Aircraft, 26–27 September 2000, DLR Braunschweig, 2000, pp. 13-1–13-10.Google Scholar
  7. 7.
    Melber, S.: “3D RANS Simulations for High Lift Analysis of Transport Aircraft Configurations.” Notes on numerical fluid mechanics, Volume 77, Springer Verlag, Berlin, Heidelberg, New York, 2002, pp 27–34.Google Scholar
  8. 8.
    Rogers, S.E.; Roth, K.; Cao, V.Hoa; Slotnick, J.P.; Whilock, M.; Nash, S.M.; Baker, M.D.: “Computation of viscous Flow for a Boeing 777 Aircraft in Landing Conf.” AIAA paper 2000-4221, 2000.Google Scholar
  9. 9.
    Mavriplis, D.J.: “Parallel Performance Investigations of an Unstructured Mesh Navier-Stokes Solver” ICASE Report No. 2000-13, March 2000.Google Scholar
  10. 10.
    Raddatz, J., Fassbender, J.K.: “Block Structured Navier-Stokes Solver FLOWer.” this volume.Google Scholar
  11. 11.
    Wilcox, D.C.: “Reassessment of the Scale Determining Equation for Advanced Turbulence Models.” AIAA Journal, Vol. 26, No. 11, pp. 1299–1310, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Rudnik, R.: “Evaluation of the Performance of Two-Equation Turbulence Models for Airfoil Flows.” DLR FB 97-49, 1997.Google Scholar
  13. 13.
    Spalart, P. R., Allmaras, S.R.: “A One-Equation Turbulence Model for Aerodynamic Flows.” AIAA-paper 92-0439, 1992.Google Scholar
  14. 14.
    Gerhold, T.: “Overview of the Hybrid RANS Code TAU” this volume.Google Scholar
  15. 15.
    Rudnik, R.; Melber, S.; Ronzheimer, A.; Brodersen, O.: “Aspects of 3D RANS Simulations for Transport Aircraft High Lift Configurations.” AIAA paper 2000-4326, 2000.Google Scholar
  16. 16.
    Kiock, R.: “The ALVAST Model of DLR.” DLR IB 129-96/22, 1996.Google Scholar
  17. 17.
    Brodersen, O., Hepperle, M., Ronzheimer, A., Rossow, C.-C., Schöning, B.: “The Parametric Grid Generation System MEGACADS.” Proc. of the 5th Intern. Conference on Numerical Grid Generation in Computational field Simulations 1996, Mississippi, Ed.: Soni, B.K., Thompson, J.F., Hauser, J., Eisemann, P., pp. 353–362, 1996.Google Scholar
  18. 18.
    Kallinderis, Y.: “Hybrid Grids and Their Applications.” Handbook of Grid Generation, CRC Press, Boca Raton / London / New York / Washington, D.C., pp. 25-1–25-18, 1999.Google Scholar
  19. 19.
    Puffert-Meissner, W.: “ALVAST Half-Model wind-tunnel Investigations and Comparison with Full-Span Model Results.” DLR IB 129-96/20, 1996.Google Scholar
  20. 20.
    Thiede, P.: “EUROLIFT-Advanced High Lift Aerodynamics for Transport Aircraft.” AIR & SPACE EUROPE, VOL. 3, No 3 / 4, 2001.Google Scholar
  21. 21.
    Rudnik, R.; Heinrich, R.; Eisfeld, B.; Scharz, Th.: “DLR Contributions to Code Validation Activities within the European High Lift Project EUROLIFT.” 13th AG STAB/DGLR Symposium München, 12.–14. November 2002.Google Scholar
  22. 22.
    T. Schwarz: “Development of a Wall Treatment for Navier-Stokes Computations using the Overset-Grid Technique.” 26th European Rotorcraft Forum, The Hague, The Netherlands, 26–29 September 2000.Google Scholar
  23. 23.
    Melber, S.; Wild, J.; Rudnik, R.: “Numerical High Lift Research-NHLRes. Annual Review 2001.” High Performance Computing in Science und Engineering’ 02, Springer-Verlag Berling, Heidelberg, New York, 2002, pp. 406–421.Google Scholar
  24. 24.
    Melber, S.: “3D RANS-Simulations for High-Lift Transport Aircraft Configurations with Engines” DLR IB 124-2002/27, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Melber-Wilkending
    • 1
  • R. Rudnik
    • 1
  • A. Ronzheimer
    • 1
  • T. Schwarz
    • 1
  1. 1.DLRInstitute of Aerodynamics and Flow TechnologyBraunschweig

Personalised recommendations