Advertisement

Computation of Engine-Airframe Installation Drag

  • Olaf Brodersen
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 89)

Summary

It is demonstrated that the unstructured, hybrid method of the MEGAFLOW project is capable to compute the engine-airframe installation drag for several engine types although drag differences for varying engine positions can be very small. Results are presented for the DLR-F6 and ALVAST configurations with through-flow nacelles and powered engines. Verification by grid refinement as well as validation with wind tunnel data completes this investigation.

Keywords

Wind Tunnel Discretisation Error Aircraft Design Grid Adaptation Wind Tunnel Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Busquin, Ph., et al.: “Aeronautics: A Vision for 2020 ”., European Commission, (2001)Google Scholar
  2. 2.
    Szodruch, J., Hilbig, R.: “Building the Future Aircraft Design for the Next Century”. AIAA Paper 98-0135 (1998)Google Scholar
  3. 3.
    Kroll, N., Rossow, C.-C., Becker, K., Thiele, F.: “MEGAFLOW–A Numerical Flow Simulation System”. Aerospace Science Technology, Vol. 4, (2000), pp. 223–237zbMATHCrossRefGoogle Scholar
  4. 4.
    Kroll, N., Rossow, C.-C., Schwamborn, D., Becker, K., Heller, G.: “MEGAFLOW — A Numerical Flow Simulation Tool for Transport Aircraft Design”. 23rd ICAS Congress, Toronto, paper 2002-1.10.5 (2002)Google Scholar
  5. 5.
    Rossow, C.-C., Godard, J.-L., Hoheisel, H., Schmitt, V.: “Investigation of Propulsion Integration Interference on a Transport Aircraft Configuration”. AIAA Paper 92-3097 (1992)Google Scholar
  6. 6.
    Hoheisel, H.: “Aerodynamic Aspects of Engine-Aircraft Integration of Transport Aircraft”. Aerospace Science and Technology, November (1997), pp. 475–487Google Scholar
  7. 7.
    Burgsmüller, W., Rollin, C., Rossow, C.-C.: “Engine Integration on Future Transport Aircraft — The European Research Programs DUPRIN/ENIFAIR”. ICAS Paper 98-5.6.2 (1998)Google Scholar
  8. 8.
    Laban, M.: “Aircraft Drag and Thrust Analysis, Project Overview and Key Results”. Proc. of Workshop on EU-Research on Aerodynamic Engine/Aircraft Integration for Transport Aircraft. DLR Braunschweig, (2000), pp. 9.1–9.15Google Scholar
  9. 9.
    von Geyr, FrHr. H.: “Key Results of Detailed Thrust and Drag Studies on the ALVAST Configuration”. Proc. of Workshop on EU-Research on Aerodynamic Engine/Aircraft Integration for Transport Aircraft. DLR Braunschweig, (2000), pp. 12.1–12.17Google Scholar
  10. 10.
    Rudnik, R., Rossow, C.-C., Frhr. von Geyr, H.: “Numerical simulation of engine/airframe integration for high-bypass engines”. Aerospace Science and Technology, Vol. 6, January (2002), pp. 31–42zbMATHCrossRefGoogle Scholar
  11. 11.
    Brodersen, O., Monsen, E., Ronzheimer, A., Rudnik, R., Rossow, C.-C.: “Computation of Aerodynamic Coefficients for the DLR-F6 Configuration using MEGAFLOW”. Notes on Numerical Fluid Mechanics, Ed. Nitsche W. et al., Vieweg Braunschweig, Vol. 72, (1998), pp. 85–92Google Scholar
  12. 12.
    Gerhold, T., Evans, J.: “Efficient Computation of 3D-Flows for Complex Configurations with the DLR-Tau Code Using Automatic Adaptation”. Notes on Numerical Fluid Mechanics, Ed. Nitsche W. et al., Vieweg Braunschweig, Vol. 72, (1998), pp. 178–185Google Scholar
  13. 13.
    Brodersen, O.: “Drag Prediction of Engine-Airframe Interference Effects Using Unstructured Navier-Stokes Calculations”. Journal of Aircraft, Vol. 39, No. 6, (2002), pp. 927–935CrossRefGoogle Scholar
  14. 14.
    Brodersen, O., Hain, R., von Geyr, FrHr. H.: “Hybrid Navier-Stokes Calculations for Transport Aircraft with Conventional and High-Bypass Engines.” STAB-Tagung, Munich, (2002)Google Scholar
  15. 15.
    Galle, M.: “Ein Verfahren zur numerischen Simulation kompressibler, reibungsbehafteter Strömungen auf hybriden Netzen”. PhD thesis, University of Stuttgart, DLR-FB 99-04, (1999)Google Scholar
  16. 16.
    Spalart, P.R., Allmaras, S.R.: “A One-Equation Turbulence Model for Aerodynamic-Flows”. AIAA Paper, 92-0439, (1992)Google Scholar
  17. 17.
    Edwards, J., Chandra, S.: “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Seperated Flowfields”. AIAA Journal of Aircraft, Vol. 34, No. 4, (1996), pp. 756–763Google Scholar
  18. 18.
    CentaurSoft: “The Grid Generation Package Centaur”. http://www.centaursoft.com, (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Olaf Brodersen
    • 1
  1. 1.DLRInstitute of Aerodynamics and Flow TechnologyBraunschweig

Personalised recommendations