Skip to main content

Simulation of the motion and heating of an irregular plasma

  • Conference paper
Computational Science and High Performance Computing
  • 510 Accesses

Summary

One of the attractive plasma physics problems is the plasma heating and confinement one. Because of the variety of regimes, the wide range of parameters of the medium, and the complexity and nonlinearity of the examined processes, the problem on plasma heating and propagation is a multiparameter one, which requires the use of various approaches. In the present work the differential model is presented, based on the three-fluid approach, which is designed to perform computational experiments on heating and motion of a dense ionized gas cloud (plasmoid) in a powerful magnetic field. The model takes into account such processes as ionization, heating, heat transmission, and relativist electron beam action. The model includes continuity and energy equations for all plasma components being studied, motion equations for heavy particles, and magnetic-field equations. The action of the electric field is taken into account using the simplifications that allow excluding of relatively rapid electron motions from the calculations, which makes the model more effective.

For the numerical solution of the problem, the economical finite-difference scheme is developed, which is based on the factorization method with the splitting into spatial directions and physical processes. The algorithm allows obtaining solutions of gas dynamics and of magnetic induction equations separately. The beam energy transfer is modeled using the experimental data.

The calculations of the propagation of a plasmoid heated by a source in an external magnetic field are performed. The mechanism of the effect of the magnetic field and of the heat source on the plasmoid expansion is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kovenya VM, Tarnavskii GA, Chernyi SG (1990) Use of the Splitting Method in Aerodynamic Problems. Novosibirsk: Nauka (in Russian)

    Google Scholar 

  2. Astrelin VT, Burdakov AV, Huber NA, Kovenya VM (2001) Prikl Mekh Tekhn Fiz 42(6):3–18

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huber, N.A. (2005). Simulation of the motion and heating of an irregular plasma. In: Krause, E., Shokin, Y.I., Resch, M., Shokina, N. (eds) Computational Science and High Performance Computing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32376-7_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-32376-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24120-1

  • Online ISBN: 978-3-540-32376-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics