Skip to main content

SORE (Self Organizable Regulating Engine) - An Example of a Possible Building Block for a “Biologizing” Control System

  • Chapter
Book cover Soft Computing for Information Processing and Analysis

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 164))

  • 1675 Accesses

Abstract

The goals of this paper are threefold: (1) to introduce SORE to the biocontrol systems research community, describe how it works and explain why it could be an successful basic building block for a biocontrol system, (2) to present the basic characteristics of SORE and Boolean networks (BN) in a modern control language, with emphasis on their mathematical bases, (3) to illustrate, using some simple examples, why SORE’s inherent properties enable it to realize many of the desired basic requirements for a “biologizing” control system. SORE also exhibits self-organizing, reproducing, colonization and grouping actions - essential traits of life. This paper does not report detailed research results; rather, it studies the feasibility of SORE in biocontrol systems based upon computer simulations. Rigorous research results will be presented in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Casti, “Biologizing” control theory: How to make a control system come alive, Complexity 7(4), 10–12, 2002

    Article  MATH  MathSciNet  Google Scholar 

  2. Report of the workshop Held at the University of Santa Clara on September 18–19, 1986, Challenges to control: A collective view, IEEE Trans. Automatic Control 32(4), 275–285, 1987

    Google Scholar 

  3. W. B. Cannon, The wisdom of the body, W. W. Norton and Co., New York, 1939

    Google Scholar 

  4. R. Lathrop, Intelligent systems in biology: Why the excitement?, IEEE Intelligent Systems, 8–13, Nov./Dec. 2001

    Google Scholar 

  5. J. Leith et al., Toward more intelligent annotation tools: A Prototype, IEEE Intelligent Systems, 42–51, Nov./Dec. 2001

    Google Scholar 

  6. J. S. Albus, Outline for a theory of intelligence, IEEE Trans. SMC 21(3), 473–509, 1991

    MathSciNet  Google Scholar 

  7. J. S. Albus, The engineering of mind, Information Sciences 117, 1–18, 1999

    Article  Google Scholar 

  8. P. P. Wang and H. D. Cheng, “SORE: Self organizable and regulating engine” A research proposal submitted to US NSF, Feb. 20, 2003, File No.: 03248-27, Fastlane

    Google Scholar 

  9. P. P. Wang and J. Robinson, What is SORE, The 7th Proceedings of the Joint Conferences on Information Sciences, Sep. 2003

    Google Scholar 

  10. P. P. Wang et al., A study of the Two-Gene Network-The simplest special case of SORE, The 7th Proceedings of the Joint Conferences on Information Sciences, Sep. 2003

    Google Scholar 

  11. P. P. Wang and H. Tao, A Novel method of error correcting code generation based upon SORE, The 7th Proceedings of the Joint Conferences on Information Sciences, Sep. 2003

    Google Scholar 

  12. P. P. Wang and J. Yu. SORE-A powerful classifier, The 7th Proceedings of the Joint Conferences on Information Sciences, Sep. 2003

    Google Scholar 

  13. T. E. Ideker et al., Discovery of regulatory interactions through perturbation: inference and experiment design, Pacific Symposium on Biocomputing, 5, 302–313, 2000

    Google Scholar 

  14. J. Hammer, On some control problems in molecular biology, Proceedings of 33rd Conference on Decision and Control, 4098–4103, 1994

    Google Scholar 

  15. N. Rashevsky, Mathematical biophysics, The University of Chicago Press, 1948

    Google Scholar 

  16. G. Rozenberg and A. Salomma, L systems, Lecture Notes in Computer Science, 15, Springer Verlag, Berlin, 1975

    Google Scholar 

  17. J. von Neumann, The theory of self-reproducing automata, University of Illinois Press, Urbana, 1966

    Google Scholar 

  18. A. Lyndenmayer, Mathematical models for cellular interactions in development, Parts 1 and 2, J. of Theoretical Biology, 18, 280–315, 1968

    Article  Google Scholar 

  19. S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. of Theoretical Biology, 22, 437–467, 1969

    Article  MathSciNet  Google Scholar 

  20. IEEE Computer Systems Society, Proceedings of the 1974 Conference on Biologically Motivated Automata Theory, McLean VA, 1974

    Google Scholar 

  21. K. H. Choi and M. Sasaki, Brain-wave bio potentials based mobile robot control: Wavelet-neural network pattern recognition approach, IEEE Int. Conference on SMC, 1, 322–328, 2001

    Google Scholar 

  22. E. Mjolsness and A. Tavormina, The synergy of biology, intelligent systems, and space exploration, IEEE Intelligent Systems, 20–25, Mar./Apr. 2000

    Google Scholar 

  23. R. B. Altman, Challenges for intelligent systems in biology, IEEE Intelligent Systems, 14–18, Nov./Dec. 2001

    Google Scholar 

  24. J. M. Evans et al., Knowledge engineering for real time intelligent control, Proceedings of the 2002 IEEE Int. Symposium on Intelligent Control, Oct. 2002

    Google Scholar 

  25. H. Bolouri, Mechanisms underlying the evolution of robust nonlinear control in biology, Proceedings of the 1999 IEEE Int. Symposium on Intelligent Control/Intelligent Systems and Semiotics, Sep. 1999

    Google Scholar 

  26. P. J. Fleming and R. C. Purshouse, Evolutionary algorithms in control systems engineering: A survey, Control Engineering Practice, 10, 1223–1241, 2002

    Article  Google Scholar 

  27. J. Lancharles et al., Boolean networks decomposition using genetic algorithms, Microelectronics Journal, 28, 551–560, 1997

    Article  Google Scholar 

  28. L. Raeymaekers, Dynamics of Boolean networks controlled by biologically meaningful functions, J. of Theoretical Biology, 218, 331–341, 2002

    Article  MathSciNet  Google Scholar 

  29. F. Forgelman-Soulie, Parallel and sequential computation on Boolean networks, Theoretical Computer Science, 40, 275–300, 1985

    Article  MathSciNet  Google Scholar 

  30. S. Bilke and F. Sjunnesson, Stability of the Kauffman model, Physical Review E, 65, 016129, 2001

    Article  Google Scholar 

  31. J. A. B. Tome and J. P. Carvalho, Rule capacity in fuzzy Boolean networks, Proceedings of NAFIPS 2002, 27–29, 2002

    Google Scholar 

  32. J. E. Lynch, Critical points for random Boolean networks, Physica D, 172, 49–64, 2002

    Article  MATH  MathSciNet  Google Scholar 

  33. E. R. Dougherty and I. Shmulevich, Mappings between probabilistic Boolean networks, Signal Processing, 83, 779–809, 2003

    Article  Google Scholar 

  34. C. Gotsman et al., Asynchronous dynamics of random Boolean networks, IEEE International Conference on Neural Networks, 1, 1–7, 1988

    Article  Google Scholar 

  35. M. Dorigo, Learning by probabilistic Boolean networks, IEEE International Conference on Neural Networks, 2, 887–891, 1994

    Google Scholar 

  36. T. Akutsu et al., Identification of genetic networks by strategic gene disruptions and gene overexpressions under a Boolean model, Theoretical Computer Science, 298, 235–251, 2003

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Sugita, Functional analysis of chemical systems in vivo using a logical circuit equivalent. II. The idea of a molecular automaton, J. of Theoretical Biology, 4, 179–189, 1963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, P.P., Robinson, J., Choi, BJ. (2005). SORE (Self Organizable Regulating Engine) - An Example of a Possible Building Block for a “Biologizing” Control System. In: Nikravesh, M., Zadeh, L.A., Kacprzyk, J. (eds) Soft Computing for Information Processing and Analysis. Studies in Fuzziness and Soft Computing, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32365-1_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-32365-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22930-8

  • Online ISBN: 978-3-540-32365-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics