Skip to main content

Osteoinduction: Basic Principles and Developments

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM. The bone induction principle. Clin Orthop & RR 53: 243–283, 1967.

    CAS  Google Scholar 

  2. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. JBIS 84A, 6: 1032–1044, 2002.

    Google Scholar 

  3. Massague 1996

    Google Scholar 

  4. Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O’Driscoll SW. Combined effects of insulin-like growth factor-1 and TGF-betal on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 2003; 11(1): 55–64.

    Article  CAS  PubMed  Google Scholar 

  5. Andrades JA, Han B, Nimni ME, Ertl DC, Simpkins RJ, Arrabal MP, Becerra J. A modified rhTGF-betal and rhBMP-2 are effective in initiating a chondro-osseous differentiation pathway in bone marrow cells cultured in vitro. Connect Tissue Res 2003; 44(3–4): 188–197.

    CAS  PubMed  Google Scholar 

  6. Beck LS, Amento EP, Xu Y, Deguzman L, Lee WP, Nguyen T, Gillett NA. TGF-beta 1 induces bone closure of skull defects: temporal dynamics of bone formation in defects exposed to rhTGF-beta 1. J Bone Miner Res 1993; 8(6): 753–761.

    CAS  PubMed  Google Scholar 

  7. Lind M, Schumacker B, Soballe K, Keller J, Melsen F, Bunger C. Transforming growth factor-beta enhances fracture healing in rabbit tibiae. Acta Orthop Scand 1993; 64: 553–556.

    CAS  PubMed  Google Scholar 

  8. Nielsen HM, Andreassen TT, Ledet T, Oxlund H. Local injection of TGF-beta increases the strength of tibial fractures in the rat. Acta Orthop Scand 1994; 65: 37–41.

    CAS  PubMed  Google Scholar 

  9. Critchlow MA, Bland YS, Ashhurst DE. The effect of exogenous transforming growth factor-beta 2 on healing fractures in the rabbit. Bone 1995; 16: 521–527.

    Article  CAS  PubMed  Google Scholar 

  10. Mayahara H, Ito T, Nagai H, Miyajima H, Tsukuda R, Taketomi S, Mizoguchi J, Kato K. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 1993; 9(1): 73–80.

    CAS  PubMed  Google Scholar 

  11. Zellin G, Alberius P, Linde A. Autoclaved Bone for Craniofacial Reconstruction: Effects of Supplementation with Bone Marrow or Recombinant Human Fibroblast Growth Factor-2. Plastic & Reconstructive Surgery 102(3): 792–800, September 1998.

    CAS  Google Scholar 

  12. Kato T, Kawaguchi H, Hanada K, Aoyama L, Hiyama Y, Nakamura T, Kuzutani K, Tamura M, Kurokawa T, Nakamura K. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res 1998; 16: 654–659.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura T, Hara Y, Tagawa M, Tamura M, Yuge T, Fukuda H, Nigi H. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodelling in experimental dog tibial fracture. J Bone Miner Res 1998; 13: 942–949.

    CAS  PubMed  Google Scholar 

  14. Radomsky ML, Aufdemorte TB, Swain LD, Fox WC, Spiro RC, Poser JW. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res 1999; 17:607–614.

    Article  CAS  PubMed  Google Scholar 

  15. Schnettler R, Alt V, Dingeldein E, Pfefferle HJ, Kilian O, Meyer C, Heiss C, Wenisch S. Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Biomaterials 2003; 24(25): 4603–4608.

    Article  CAS  PubMed  Google Scholar 

  16. Bland YS, Critchlow MA, Ashhurst DE. Exogenous fibroblast growth factors-1 and-2 do not accelerate fracture healing in the rabbit. Acta Orthop Scand 1995; 66(6): 543–548.

    CAS  PubMed  Google Scholar 

  17. Northmore-Ball 1980

    Google Scholar 

  18. Bak B, Jorgensen PH, Andreassen TT. Dose response of growth hormone on fracture healing in the rat. Acta Orthop Scand 1990; 61: 54–57.

    CAS  PubMed  Google Scholar 

  19. Carpenter JE, Hipp JA, Gerhart TN, Rudman CG, Hayes WC, Trippel SB. Failure of growth hormone to alter the biomechanics of fracture-healing in a rabbit model. J Bone Joint Surg Am 1992; 74: 359–367.

    CAS  PubMed  Google Scholar 

  20. Thaller SR, Dart A, Tesluk H. The effects of insulin-like growth factor-1 on critical-size calvarial defects in Sprague-Dawley rats. Ann Plast Surg 1993; 31: 429–433.

    CAS  PubMed  Google Scholar 

  21. Bhandari M, Schemitsch EH. Bone formation following intramedullary femoral reaming is decreased by indomethacin and antibodies to insulin-like growth factors. J Orthop Trauma 2002; 16(10): 717–722.

    Article  PubMed  Google Scholar 

  22. Meinel L, Zoidis E, Zapf J, Hassa P, Hottiger MO, Auer JA, Schneider R, Gander B, Luginbuehl V, Bettschart-Wolfisberger R, Illi OE, Merkle HP, von Rechenberg B. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 2003; 33(4): 660–672.

    Article  CAS  PubMed  Google Scholar 

  23. Kandziora F, Schmidmaier G, Schollmeier G, Bail H, Pflugmacher R, Gorke T, Wagner M, Raschke M, Mittlmeier T, Haas NP. IGF-I and TGF-betal application by a poly-(D,L-lactide)-coated cage promotes intervertebral bone matrix formation in the sheep cervical spine. Spine 2002; 27(16): 1710–1723.

    Article  PubMed  Google Scholar 

  24. Kandziora F, Pflugmacher R, Scholz M, Schafer J, Schollmeier G, Schmidmaier G, Duda G, Raschke M, Haas NP. Dose-dependent effects of combined IGF-I and TGF-beta1 application in a sheep cervical spine fusion model. Eur Spine J 2003; 12(5): 464–473.

    Article  CAS  PubMed  Google Scholar 

  25. Lucarelli E, Beccheroni A, Donati D, Sangiorgi L, Cenacchi A, Del Vento AM, Meotti C, Bertoja AZ, Giardino R, Fornasari PM, Mercuri M, Picci P. Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 2003; 24(18): 3095–3100.

    Article  CAS  PubMed  Google Scholar 

  26. Gruber R, Karreth F, Frommlet F, Fischer MB, Watzek G. Platelets are mitogenic for periosteum-derived cells. J Orthop Res 2003; 21(5): 941–948.

    Article  CAS  PubMed  Google Scholar 

  27. Nash TJ, Howlett CR, Martin C, Steele J, Johnson KA, Hicklin DJ. Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 1994; 5: 203–208.

    Google Scholar 

  28. Zhang CQ, Yuan T, Zeng BF. Experimental study on effect of platelet-rich plasma in repair of bone defect. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2003; 17(5): 355–358.

    PubMed  Google Scholar 

  29. Li H, Zou X, Xue Q, Egund N, Lind M, Bunger C. Anterior lumbar interbody fusion with carbon fiber cage loaded with bioceramics and platelet-rich plasma. An experimental study on pigs. Eur Spine J 2004; Jan 17.

    Google Scholar 

  30. Wiltfang J, Kloss FR, Kessler P, Nkenke E, Schultze-Mosgau S, Zimmermann R, Schlegel KA. Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res 2004; 15(2): 187–193.

    Article  PubMed  Google Scholar 

  31. Danesh-Meyer MJ, Filstein MR, Shanaman R. Histological evaluation of sinus augmentation using platelet rich plasma (PRP): a case series. J Int Acad Periodontol 2001; 3(2): 48–56.

    CAS  PubMed  Google Scholar 

  32. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 2003; 85-A(8): 1544–1552.

    PubMed  Google Scholar 

  33. Urist MR. Bone formation by autoinduction. Science 1965; 50: 893–899.

    Google Scholar 

  34. Urist MR, Huo YK, Brownell AG, Hohl WM, Buyske J, Lietze A, Tempst P, Hunkapiller M, DeLange RJ. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci USA 1984; 81(2): 371–375.

    CAS  PubMed  Google Scholar 

  35. Boden SD, Moskovitz PA, Morone MA, Toribitake Y. Video-assisted lateral intertransverse process arthrodesis. Validation of a new minimally invasive lumbar spinal fusion technique in the rabbit and nonhuman primate (rhesus) models. Spine 1996; 21(22): 2689–2697.

    Article  CAS  PubMed  Google Scholar 

  36. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988; 242: 1528–1534.

    CAS  PubMed  Google Scholar 

  37. Anderson HC, Hsu HH, Raval P, Hunt TR, Schwappach JR, Morris DC, Schneider DJ. The mechanism of bone induction and bone healing by human osteosarcoma cell extracts. Clin Orthop 1995; 313: 129–134.

    PubMed  Google Scholar 

  38. Andrades JA, Santamaria JA, Nimni ME, Becerra J. Selection and amplification of a bone marrow cell population and its induction to the chondro-osteogenic lineage by rhOP-1: an in vitro and in vivo study. Int J Dev Biol 2001; 45(4): 689–693.

    CAS  PubMed  Google Scholar 

  39. Chaudhary LR, Hofmeister AM, Hruska KA. Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone 2004; 34(3): 402–411.

    Article  CAS  PubMed  Google Scholar 

  40. Kusumoto K, Bessho K, Fujimura K, Akioka J, Okubo Y, Wang Y, Iizuka T, Ogawa Y. Osteoinduction by recombinant human bone morphogenetic protein-2 in muscles of nonhuman primates. J Int Med Res 2002; 30(3): 251–259.

    CAS  PubMed  Google Scholar 

  41. Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop 1994; 301: 302–312.

    PubMed  Google Scholar 

  42. Cook SD, Wolfe MW, Salkeld SL, Rueger DC. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg Am 1995; 77: 734–750.

    CAS  PubMed  Google Scholar 

  43. den Boer FC, Wippermann BW, Blokhuis TJ, Patka P, Bakker FC, Haarman HJ. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J Orthop Res 2003; 21(3): 521–528.

    Google Scholar 

  44. Hamdy RC, Amako M, Beckman L, Kawaguchi M, Rauch F, Lauzier D, Steffen T. Effects of osteogenic protein-1 on distraction osteogenesis in rabbits. Bone 2003; 33(2): 248–255.

    Article  CAS  PubMed  Google Scholar 

  45. Mizumoto Y, Moseley T, Drews M, Cooper VN 3rd, Reddi AH. Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7. J Bone Joint Surg Am 2003; 85-ASuppl 3: 124–130.

    PubMed  Google Scholar 

  46. den Boer FC, Bramer JA, Blokhuis TJ, Van Soest EJ, Jenner JM, Patka P, Bakker FC, Burger EH, Haarman HJ. Effect of recombinant human osteogenic protein-1 on the healing of a freshly closed diaphyseal fracture. Bone 2002; 31(1): 158–164.

    Google Scholar 

  47. Johnsson R, Stromqvist B, Aspenberg P. Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine 2002; 27(23): 2654–2661.

    Article  PubMed  Google Scholar 

  48. Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz H, Phillips F, Hilibrand A, Albert TJ. A pilot safety and efficacy study of OP-1 putty (rhBMP-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J 2003; 12(5): 495–500. Epub 2003 Aug 08.

    Article  PubMed  Google Scholar 

  49. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001; 83Suppl 1: S151–158.

    PubMed  Google Scholar 

  50. Sciadini MF, Johnson KD. Evaluation of recombinant human bone morphogenetic protein-2 as a bone-graft substitute in a canine segmental defect model. J Orthop Res 2000; 18: 289–302.

    Article  CAS  PubMed  Google Scholar 

  51. Bostrom MP, Camacho NP. Potential role of bone morphogenetic proteins in fracture healing. Clin Orthop 1998; 355Suppl: S274–282.

    PubMed  Google Scholar 

  52. Einhorn TA, Trippel SB. Growth factor treatment of fractures. Instr Course Lect 1997; 46: 483–486.

    CAS  PubMed  Google Scholar 

  53. Boden SD, Martin GJ Jr, Horton WC, Truss TL, Sandhu HS. Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 1998; 11: 95–101.

    CAS  PubMed  Google Scholar 

  54. Boden SD, Zdeblick TA, Sandhu HS, Heim SE. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 2000; 25: 376–381.

    Article  CAS  PubMed  Google Scholar 

  55. Burkus JK, Dorchak JD, Sanders DL. Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine 2003; 28(4):372–377.

    Article  PubMed  Google Scholar 

  56. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002; 84-A(12): 2123–2134.

    PubMed  Google Scholar 

  57. Wildemann B, Bamdad P, Holmer Ch, Haas NP, Raschke M, Schmidmaier G. Local delivery of growth factors from coated titanium plates increases osteotomy healing in rats. Bone 2004; 34(5): 862–868.

    Article  CAS  PubMed  Google Scholar 

  58. Lee JY, Peng H, Usas A, Musgrave D, Cummins J, Pelinkovic D, Jankowski R, Ziran B, Robbins P, Huard J. Enhancement of bone healing based on ex vivo gene therapy using human muscle-derived cells expressing bone morphogenetic protein 2. Hum Gene Ther 2002; 13(10): 1201–1211.

    Article  CAS  PubMed  Google Scholar 

  59. Dumont RJ, Dayoub H, Li JZ, Dumont AS, Kallmes DF, Hankins GR, Helm GA. Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents. Neurosurgery 2002; 51(5): 1239–1244.

    PubMed  Google Scholar 

  60. Rose T, Peng H, Usas A, Kuroda R, Lill H, Fu FH, Huard J. Gene therapy to improve osteogenesis in bone lesions with severe soft tissue damage. Langenbecks Arch Surg 2003; 388(5): 356–365.

    PubMed  Google Scholar 

  61. Rundle CH, Miyakoshi N, Kasukawa Y, Chen ST, Sheng MH, Wergedal JE, Lau KH, Baylink DJ. In vivo bone formation in fracture repair induced by direct retroviral-based gene therapy with bone morphogenetic protein-4. Bone 2003; 32(6): 591–601.

    Article  CAS  PubMed  Google Scholar 

  62. Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 2003; 85-A(5): 905–911.

    PubMed  Google Scholar 

  63. Southwood LL, Frisbie DD, Kawcak CE, Ghivizzani SC, Evans CH, McIlwraith CW. Evaluation of Ad-BMP-2 for enhancing fracture healing in an infected defect fracture rabbit model. J Orthop Res 2004; 22(1): 66–72.

    Article  CAS  PubMed  Google Scholar 

  64. Niyibizi, C et al. Potential role for gene therapy in the enhancement of fracture healing. Clin Orthop Rel Res 1998; 335S: 148–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Capanna, R., De Biase, P. (2006). Osteoinduction: Basic Principles and Developments. In: Leung, KS., et al. Practice of Intramedullary Locked Nails. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32345-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-32345-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25349-5

  • Online ISBN: 978-3-540-32345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics