Skip to main content

Non-Autonomous Business Cycle Model

  • Chapter
Business Cycle Dynamics

Conclusions p] In a classical model of business cycle, we introduce parameters depending on time, producing a non-autonomous linear second order difference equation, which is analyzed in the setting of non-autonomous discrete systems. Roughly speaking, one could think on a linear model whose parameters are pertubed is some way, for instance a random way.

The stability and limit set of the orbits of the non-autonomous system associated to the difference equation are studied. When all the maps of the system are contractive, then the system is stable, producing bounded orbits. in other cases, some simulations shows that when we have expansive maps in the system, unbounded orbits and some type of chaotic behaviour may appear. It must be pointed out that the chaotic behaviour appear when both, contractive and expansive maps are in the system infinitely many times.

It is an interesting question to analyze these type of “chaotic orbits”, that is: are they really chaotic in some theoretical sense?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, J., Peralta-Salas, D. and Romera, M., 2005, “Can two chaotic systems make an order?”, Physica D 200:124–132.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Aoki, N., and Hiraide, K., 1994, Topological theory of dynamical systems: recent advances, North-Holland.

    Google Scholar 

  • Arena, P. Fazzino, S. Fortuna, L. and Maniscalco, P., 2003, “Game theory and non-linear dynamics: the Parrondo Paradox case study”, Chaos, Solitons & Fractals 17:545–555.

    Article  MATH  Google Scholar 

  • Buceta, J., Lindenberg, K. and Parrondo, J. M. R., 2002, “Pattern formation induced by nonequilibrium global alternation of dynamics”, Phys. Rev. E 66:36216–36227.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Cánovas, J. S. and Linero, A., 2002, “On topological entropy of commuting interval maps”, Nonlinear Analysis 51:1159–1165.

    Article  MATH  MathSciNet  Google Scholar 

  • Harmer, G. P., Abbott, D. and Taylor, P. G., 2000, “The paradox of Parrondo’s games”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456:247–259.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kempf, R., 2002, “On Ω-limit sets of discrete-time dynamical systems”, Journal of Difference Equations and Applications 8:1121–1131.

    Article  MATH  MathSciNet  Google Scholar 

  • Kolyada, S. and Snoha, L’., 1995, “On topological dynamics of sequences of continuous maps”, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5:1437–1438.

    Article  MATH  MathSciNet  Google Scholar 

  • Kolyada, S. and Snoha, L’., 1996, “Topological entropy of nonautononous dynamical systems”, Random and Comp. Dynamics 4:205–233.

    MATH  MathSciNet  Google Scholar 

  • Klíc, A. and Pokorny, P., 1996, “On dynamical systems generated by two alternating vector fields”, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6:2015–2030.

    Article  MathSciNet  Google Scholar 

  • Klíc, A., Pokorny, P. and Rehácek, J., 2002, “Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula”, Math. Slovaca 52:79–97.

    MATH  MathSciNet  Google Scholar 

  • Serre, D., 2002, Matrices. Theory and applications, Graduate text in Mathematics 216, Springer Verlag.

    Google Scholar 

  • Sharkovsky, A. N., Kolyada, S. R, Sivak, A. G. and Fedorenko, V. V., 1997, Dynamics of one-dimensional maps, Kluwer Academic Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cánovas Peña, J.S., Marín, M.R. (2006). Non-Autonomous Business Cycle Model. In: Puu, T., Sushko, I. (eds) Business Cycle Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32168-3_6

Download citation

Publish with us

Policies and ethics