Advertisement

Origins and reduction of threading dislocations in GaN epitaxial layers

  • S Mahajan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 107)

Abstract

We examined, using AFM and TEM, GaN nucleation layers (NLs) and early stages of high temperature (HT) GaN overgrowth on annealed NLs and HT GaN layers grown for different durations. We demonstrate that threading dislocations (TDs) do not form at the coalescence of HT GaN growths. We identify two sources of TDs: highly defective regions in NLs and point defects present in HT GaN. We developed a novel approach for reducing TDs. We refer to it as in situ epitaxial layer overgrowth. This process entails depositing in situ a very thin silicon nitride layer on as-deposited NLs, followed by HT growth. The density of TDs is reduced to 2×108 cm−2. We ascertain the origin of the observed reduction.

Keywords

Silicon Nitride Mosaic Structure High Temperature Growth Mask Layer Silicon Nitride Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48, 353CrossRefGoogle Scholar
  2. Davis R F, Gehrke T, Linthincum K J, Zhelve T S, Preble E A, Rajagopal P, Zorman C A and Mehregany M 2001 J. Cryst. Growth 225, 134CrossRefGoogle Scholar
  3. Fang X PhD dissertation 2004 Arizona State UniversityGoogle Scholar
  4. Folstaedt D M, Provencio P P, Missert N A, Mitchell C C, Koleske D D, Allerman A A and Ashby C I H 2002 Appl. Phys. Lett. 81, 2758CrossRefGoogle Scholar
  5. Hiramatsu K, Nishiyama K, Onishi M, Mizutani H, Narukawa M, Motogaito A, Miyake H, Iyechika Y and Maeda T 2002 J. Cryst. Growth 221, 316CrossRefGoogle Scholar
  6. Lorenz K, Gonsalves M, Kim W, Narayanan V and Mahajan S 2000 Appl. Phys. Lett. 77, 3391CrossRefGoogle Scholar
  7. Nam O H, Bremser N D, Zhelva T and Davis R F 1997 Appl. Phys. Lett. 71, 2638CrossRefGoogle Scholar
  8. Narayanan V, Lorenz K, Kim W and Mahajan S 2002 Phil. Mag. A 82, 885CrossRefGoogle Scholar
  9. Ning X J, Chien F R, Pirouz P, Yang J W and Khan M A 1996 J. Mater. Res. 11, 580Google Scholar
  10. Saarinen K, Seppala P, Oila I, Hautojarvi P, Corbel C, Briot O and Aulombard R L 1998 Appl. Phys. Lett. 73, 3253CrossRefGoogle Scholar
  11. Sakai A, Sunakawa H and Usui A 1997 Appl. Phys. Lett. 71, 2259CrossRefGoogle Scholar
  12. Wu X, Fini P, Tarsa E J, Heying B, Keller S, Mishra U K, Denbaars S P and Speck J S 1998 J. Crystal Growth 189–190, 231CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S Mahajan
    • 1
  1. 1.Department of Chemical & Materials EngineeringArizona State UniversityTempe

Personalised recommendations