Advertisement

Strain relaxation and void reduction in SiC on Si by Ge predeposition

  • F M Morales
  • P Weih
  • Ch Wang
  • Th Stauden
  • O Ambacher
  • J Pezoldt
Conference paper
  • 521 Downloads
Part of the Springer Proceedings in Physics book series (SPPHY, volume 107)

Abstract

In this work, 120 nm cubic SiC layers have been grown on Si (111) by SSMBE, depositing 1ML of Ge at different temperatures before carbonization. In every case, SiC was epitaxially grown on Si (111) showing characteristic defects and more relaxation than a reference sample where Ge was not employed. Depending on the temperature of Ge predeposition, a reduction of voids or stacking faults was achieved. The residual strain depended on this temperature, as was confirmed by electron diffraction and infrared ellipsometry measurements.

Keywords

Residual Stress Residual Strain SAED Pattern Mosaic Structure Void Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camassel J 1998 J. Vac. Sci. Technol. B16,1648Google Scholar
  2. Chassagne T, Ferro G, Haas H, Leycuras A, Mank H and Monteil Y 2004 Mater. Sci. Forum 457, 265Google Scholar
  3. Di Ciocci L, Letertre F, Le Tiec Y, Papon A M, Jassaud C and Bruel M 1997 Mater. Sci. Eng. B46, 349Google Scholar
  4. Gmelins Handbuch der Anorganischen Chemie 1959, Silicium, Part B, Weinheim, Verlag ChemieGoogle Scholar
  5. Hatayama T, Fuyuki T and Matsunami H 1997 Appl. Phys. Let. 70, 1411CrossRefGoogle Scholar
  6. Jinschek J, Kaiser U and Richter W 2001 J. Electron Microsc. 50, 3CrossRefGoogle Scholar
  7. Kaiser U, Chuvilin A, Brown P D and Richter W 1999 Microsc. Microanal. 5, 420Google Scholar
  8. Masri P, Moreaud N, Averous M, Stauden Th, Wöhner T and Pezoldt J 1999 MRS Symp. Proc. 572, 213Google Scholar
  9. Mitchel S, Spencer M G and Wongtchotigul K 1998 Mater. Sci. Forum 264. 231Google Scholar
  10. Morales F M, Molina S I, Araújo D, Cimalla V and Pezoldt J 2003 Mater. Sci. Forum 433, 285Google Scholar
  11. Morales F M, Zgheib Ch, Molina S I, Araújo D, García R, Fernández C, Sanz-Hervás A, Masri P, Weih P, Stauden Th, Cimalla V, Ambacher O and Pezoldt J 2004 phys. stat. sol. cl, 341Google Scholar
  12. Nishino S, Powell J A and Will H A 1983 Appl. Phys. Lett. 42, 460CrossRefGoogle Scholar
  13. Okhysen M E, Mazzola M S and Lo Y H 2000 Mater. Sci. Forum 338, 305Google Scholar
  14. Pezoldt J, Förster Ch, Weih P, and Masri P 2001 Appl. Surf. Sci. 184, 79CrossRefGoogle Scholar
  15. Pezoldt J, Zgheib Ch, Masri P, Averous M. Morales F M, Kosiba R, Ecke G, Weih P and Ambacher O 2004 Surf. Interface Anal. 36, 969CrossRefGoogle Scholar
  16. Rohmfeld S, Hundhausen M, Ley L, Zorman CA and Mehregany M 2002 J. Appl. Phys. 91, 1113CrossRefGoogle Scholar
  17. Zekentes K and Tsagaraki T 1999 Mater. Sci. Eng., B61–62, 559CrossRefGoogle Scholar
  18. Zgheib Ch, Masri P, Weih P, Ambacher O and Pezoldt J 2004 Mater. Sci. Forum 457, 301CrossRefGoogle Scholar
  19. Zhang Z C, Chen Y H, Li D B, Zhang F Q, Yang S Y, Ma B S, Sun G S, Wang Z G and Zhang X P 2003 J. Cryst. Growth 257, 321CrossRefGoogle Scholar
  20. Zhou G L, Ma Z, Lin M E, Shen T C, Allen L H and Morkoç H 1993 J. Cryst. Growth 134, 167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • F M Morales
    • 1
  • P Weih
    • 1
  • Ch Wang
    • 1
  • Th Stauden
    • 1
  • O Ambacher
    • 1
  • J Pezoldt
    • 1
  1. 1.Department of Nanotechnology, Centre for Micro- and Nanotechnology (ZMN)TU-IlmenauIlmenauGermany

Personalised recommendations