Advertisement

Strain relaxation of SiGe/Si heterostructures by helium ion implantation and subsequent annealing: Helium precipitates acting as dislocation sources

  • Norbert Hueging
  • Martina Luysberg
  • Knut Urban
  • Dan Buca
  • Bernd Hollaender
  • Siegfried Mantl
  • Matcio J Morschbacher
  • Paulo F P Fichtner
  • Roger Loo
  • Matty Caymax
Conference paper
  • 550 Downloads
Part of the Springer Proceedings in Physics book series (SPPHY, volume 107)

Abstract

The strain relaxation process of pseudomorphic SiGe/Si(100) heterostructures has been investigated by ex-situ and in-situ transmission electron microscopy, Rutherford backscattering spectroscopy and ion channelling. SiGe layers with Ge contents between 19 and 27 at% were implanted with doses of 0.7 − 1.5×1015 He/cm−2 and annealed at temperatures from 200°C up to 950°C. Helium precipitates in overpressurised, platelet shaped volume defects underneath the heterostructure interface during low annealing temperatures of 400°C. The precipitates decay into arrangements of a larger central precipitate surrounded by a ring system of smaller bubbles. At higher temperatures a transformation from platelet-like to a spherical bubble is observed and for temperatures above 800°C coalescence of entire bubbles is found in in-situ TEM heating experiments. Particular emphasis is placed on the onset of the strain relaxation process which occurs after thermal treatment around 600°C. The processes involved are verified by in-situ experiments. The nucleation of dislocation loops at the helium filled precipitates, their enlargement and the formation of misfit dislocation segments elongating via the movement of threading dislocation segments are observed. Thus, helium precipitates are unambiguously identified as dislocation sources and, therefore, promote the strain relaxation of epitaxial SiGe layers.

Keywords

Dislocation Loop Misfit Dislocation Strain Relaxation Spherical Bubble SiGe Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong G and Maiti C 1998 Sol.-State Electron. 42, 498Google Scholar
  2. Beaufort M, Oliviero E, Garem H, Godey S, Ntsenzok E, Blanchard C and Barbot J 2000 Phil. Mag. B 80, 1975CrossRefGoogle Scholar
  3. Cai J, Mooney P, Christiansen S, Chen H, Chu J and Ott J 2004 J. Appl. Phys. 95, 5347CrossRefGoogle Scholar
  4. Fichtner P, Kaschny R, Yankov R, Muecklich A and Kreißig U 1997 Appl. Phys. Lett. 61, 2656Google Scholar
  5. Holländer B, Lenk S, Mantl S, Trinkaus H, Kirch D, Luysberg M, Hackbarth T, Herzog H and Fichtner P 2001 Nucl. Instrum. Methods Phys. Res. B 175–177, 357CrossRefGoogle Scholar
  6. Holländer B, Buca D, Mörschbächer M, Lenk S, Mantl S, Herzog H, Hackbarth T, Loo R, Caymax M and Fichtner P 2004 J. Appl. Phys. 96, 1745CrossRefGoogle Scholar
  7. Hueging N, Tillmann K, Luysberg M, Trinkaus H and Urban K 2003 Microsc. of Semicond. Mat. 180, 373Google Scholar
  8. Hueging N, Luysberg M, Urban K, Buca D and Mantl S 2005 Appl. Phys Lett. 86, 042112CrossRefGoogle Scholar
  9. Luysberg M, Kirch D, Trinkaus H, Holländer B, Lenk S, Mantl S, Hackbarth T, Herzog H and Fichtner P 2002 J. Appl. Phys. 69, 4290CrossRefGoogle Scholar
  10. Mantl S, Holländer B, Liedtke R, Mesters S, Herzog H, Kibbel H and Hackbarth T 1999 Nucl. Instrum. Methods Phys. Res. B 147, 29CrossRefGoogle Scholar
  11. Raineri V, Saggio M and Rimini E 2000 J. Mater. Res. 15, 1449Google Scholar
  12. Schwarz K 2003 Phys. Rev. Lett. 91, 145503–1CrossRefGoogle Scholar
  13. Tillmann K, Hueging N, Trinkaus H and Luysberg M 2004 Microsc. and Microanal. 10 Google Scholar
  14. Trinkaus H, Holländer B, Rongen S, Mantl S, Herzog H, Kuchenbecker J and Hackbarth T 2000 Appl. Phys. Lett. 76, 3552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Norbert Hueging
    • 4
  • Martina Luysberg
    • 4
  • Knut Urban
    • 4
  • Dan Buca
    • 1
  • Bernd Hollaender
    • 1
  • Siegfried Mantl
    • 1
  • Matcio J Morschbacher
    • 2
  • Paulo F P Fichtner
    • 2
  • Roger Loo
    • 3
  • Matty Caymax
    • 3
  1. 1.Research Center Juelich Center of Nanoelectronic Systems for Information TechnologyInstitute of Thin Films and InterfacesJuelichGermany
  2. 2.University Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.IMECLeuvenBelgium
  4. 4.Research Center Juelich and Center of Nanoelectronic Systems for Information TechnologyInstitute of Solid State ResearchJuelichGermany

Personalised recommendations