Skip to main content

3.0 T Perfusion Studies

  • Chapter
High Field Brain MRI

9.6 Conclusions

Perfusion MRI is a valuable and flexible clinical tool enabling the assessment of regional cerebral haemodynamics using a variety of techniques and playing a relevant role in treatment strategies (e.g. in deciding which patient should undergo thrombolysis).

The most frequently applied technique uses rapid T2- or T2⋆-weighted EPI sequences to monitor the first pass of a bolus of gadolinium chelate to calculate semi-quantitative maps of relative blood flow, blood volume and transit time.

The arterial spin labelling technique uses magnetically tagged blood as an endogenous tracer, allowing absolute CBF measurement using the same model as PET. Both techniques benefit from high-field imaging.

Despite disadvantages related to increased susceptibility to field inhomogeneities, use of high-field imaging, especially in combination with parallel imaging, affords higher SNR, greater sensitivity to the signal drop produced by exogenous tracers (thus permitting use of a smaller dose of contrast agent) and better performances of ASL methods, including greater sensitivity to labelled blood and lower sensitivity to uncertainties in arterial arrival time.

Finally, research is in progress to study and develop new endogenous tracers, such as H215O and hyperpolarized nucleus-based imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petrella JR, Provenzale JM (2000) MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol 175:207–220

    PubMed  CAS  Google Scholar 

  2. Cha S (2003) Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am 11(3):403–413

    Article  PubMed  Google Scholar 

  3. Provenzale JM, Jahan R, Naidich TP, Fox AJ (2003) Assessment of the patient with hyperacute stroke: imaging and therapy. Radiology 229(2):347–359

    PubMed  Google Scholar 

  4. Scarabino T, Nemore F, Giannatempo GM, et al. (2003) 3.0 T magnetic resonance in neuroradiology. Eur J Radiol 48:154–164

    Article  PubMed  Google Scholar 

  5. Scarabino T, Giannatempo GM, Pollice S, et al. (2004) 3.0 T perfusion MR imaging. Riv Neuroradiol 17:807–812

    Google Scholar 

  6. Shimony JS (2005) Concepts in perfusion MRI. Syllabus. Intl Soc Mag Reson Med 13

    Google Scholar 

  7. Zaharchuk G (2005) Frontiers of cerebral perfusion magnetic resonance imaging. Appl Radiol (Suppl to January): 100–111

    Google Scholar 

  8. Manka C, Traber F, Gieseke J, et al. (2005) Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Radiology 234(3):869–877

    PubMed  Google Scholar 

  9. Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13(4): 496–520

    Article  PubMed  CAS  Google Scholar 

  10. Derdeyn CP, Videen TO, Yundt KD, et al. (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125(3): 595–607

    Article  PubMed  Google Scholar 

  11. Flacke S, Urbach H, Folkers PJ, et al. (2000) Ultra-fast three-dimensional MR perfusion imaging of the entire brain in acute stroke assessment. J Magn Reson Imaging 11:250–259

    Article  PubMed  CAS  Google Scholar 

  12. Fiehler J, von Bezold M, Kucinski T, et al. (2002) Cerebral blood flow predicts lesion growth in acute stroke patients. Stroke 33:2421–2425

    Article  PubMed  Google Scholar 

  13. Liu Y, Karonen JO, Vanninen RL, et al. (2000) Cerebral hemodynamics in human acute ischemic stroke: a study with diffusion-and perfusion-weighted magnetic resonance imaging and SPECT. J Cereb Blood FlowMetab 20:910–920

    Article  CAS  Google Scholar 

  14. Parsons MW, Yang Q, Barber PA, et al. (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke 32:1581–1587

    PubMed  CAS  Google Scholar 

  15. Latchaw RE, Yonas H, Hunter GJ, et al. (2003) Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 34:1084–1104

    Article  PubMed  Google Scholar 

  16. Doerfler A, Eckstein HH, Eichbaum M, et al. (2001) Perfusion-weighted magnetic resonance imaging in patients with carotid artery disease before and after carotid endarterectomy. J Vasc Surg 34:587–593

    Article  PubMed  CAS  Google Scholar 

  17. Calamante F, Ganesan V, Kirkham FJ, et al. (2001) MR perfusion imaging in Moyamoya syndrome: potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke 32:2810–2816

    PubMed  CAS  Google Scholar 

  18. Maeda M, Yuh WT, Ueda T, et al. (1999) Severe occlusive carotid artery disease: hemodynamic assessment by MR perfusion imaging in symptomatic patients. Am J Neuroradiol 20:43–51

    PubMed  CAS  Google Scholar 

  19. Michel E, Liu H, Remley KB, et al. (2001) Perfusion MR neuroimaging in patients undergoing balloon test occlusion of the internal carotid artery. Am J Neuroradiol 22:1590–1596

    PubMed  CAS  Google Scholar 

  20. Kassner A, Annesley DJ, Zhu XP, et al. (2000) Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 11:103–113

    Article  PubMed  CAS  Google Scholar 

  21. Alexander E (2001) Optimizing brain tumor resection: midfield interventional MR imaging. Neuroimaging Clin N Am 11:659–672

    PubMed  Google Scholar 

  22. Vonken EP, Van Osch MJ, Willems PW, et al. (2000) Repeated quantitative perfusion and contrast permeability measurement in the MRI examination of a CNS tumor. Eur Radiol 10:1447–1451

    Article  PubMed  CAS  Google Scholar 

  23. Chiang IC, Kuo YT, Lu CY, et al. (2004) Distinction between high-grade gliomas and solitary metastases using peritumoral 3T magnetic resonance spectroscopy, diffusion and perfusion imagings. Neuroradiology 46(8):619–627

    Article  PubMed  Google Scholar 

  24. Holmes TM, Petrella JR, Provenzale JM (2004) Distinction between cerebral abscesses and high-grade neoplasms by dynamic susceptibility contrast perfusion MRI. AJR 183: 1247–1252

    PubMed  Google Scholar 

  25. Hakyemez B, Erdogan C, Ercan I, et al. (2005) High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol 60(4):493–502

    Article  PubMed  CAS  Google Scholar 

  26. Provenzale JM, Wang GR, Brenner T, et al. (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. Am J Roentgenol 178:711–716

    Google Scholar 

  27. Law M, Yang S, Babb JS, et al. (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25(5):746–755

    PubMed  Google Scholar 

  28. Hartmann M, Heiland S, Harting I, et al. (2003) Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett 338:119–122

    Article  PubMed  CAS  Google Scholar 

  29. Bozzao A, Floris R, Baviera ME, et al. (2001) Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. Am J Neuroradiol 22:1030–1036

    PubMed  CAS  Google Scholar 

  30. Firbank MJ, Colloby SJ, Burn DJ, et al. (2003) Regional cerebral blood flow in Parkinson’s disease with and without dementia. Neuroimage 20:1309–1319

    Article  PubMed  CAS  Google Scholar 

  31. Chabriat H, Pappata S, Ostergaard L, et al. (2000) Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke 31:1904–1912

    PubMed  CAS  Google Scholar 

  32. Brusa L, Bassi A, Pierantozzi M, et al. (2002) Perfusion-weighted dynamic susceptibility (DSC)MRI: basal ganglia hemodynamic changes after apomorphine in Parkinson’s disease. Neurol Sci 23(Suppl 2):S61–S62

    Article  PubMed  Google Scholar 

  33. Johnson NA, Jahng GH, Weiner MW, et al. (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin label in MR imaging: initial experience. Radiology 234:851–859

    PubMed  Google Scholar 

  34. Norfray JF, Provenzale JM (2004) Alzheimer’s disease: neuropathologic findings and recent advances in imaging. Am J Radiol 182:3–13

    Google Scholar 

  35. Szabo K, Poepel A, Pohlmann-Eden B, et al. (2005) Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain 128:1369–1376

    Article  PubMed  Google Scholar 

  36. Wuerfel J, Bellmann-Strobl J, Brunecker P, et al. (2004) Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 127:111–119

    Article  PubMed  Google Scholar 

  37. Stollberger R, Fazekas F (2004) Improved perfusion and tracer kinetic imaging using parallel imaging. Top Magn Reson Imaging 15(4):245–254

    Article  PubMed  Google Scholar 

  38. Leenders KL, Perani D, Lammertsma AA, et al. (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113:27–47

    PubMed  Google Scholar 

  39. Lassen NA, Perl W (1979) Tracer kinetic methods in medical physiology. Raven Press, New York

    Google Scholar 

  40. Yamada K, Gonzalez RG, Ostergaard L, et al. (2002) Iron-induced susceptibility effect at the globus pallidus causes underestimation of flow and volume on dynamic susceptibility contrast-enhanced MR perfusion images. Am J Neuroradiol 23(6):1022–1029

    PubMed  Google Scholar 

  41. Sorensen AG, Copen WA, Ostergaard L, et al. (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210:519–527

    PubMed  CAS  Google Scholar 

  42. Weisskoff RM, Boxerman JL, Sorensen AG, et al. (1994) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. In: Proceedings of the Society of Magnetic Resonance, 2nd Annual Meeting. San Francisco, CA, p 279

    Google Scholar 

  43. Shen T, Weissleder R, Papisov M, et al. (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29(5):599–604

    PubMed  CAS  Google Scholar 

  44. Wiener EC, Brechbiel MW, Brothers H, et al. (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31(1):1–8

    PubMed  CAS  Google Scholar 

  45. Cavagna FM, Maggioni F, Castelli PM, et al. (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32(12):780–796

    Article  PubMed  CAS  Google Scholar 

  46. Lassen NA (1984) Cerebral transit of an intravascular tracer may allow measurement of regional blood volume but not regional blood flow. J Cereb Blood Flow Metab 4(4): 633–634

    PubMed  CAS  Google Scholar 

  47. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44(3):466–473

    Article  PubMed  CAS  Google Scholar 

  48. Ostergaard L, Smith DF, Vestergaard-Poulsen P, et al. (1998) Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab 18(4):425–432

    Article  PubMed  CAS  Google Scholar 

  49. Sakoh M, Rohl L, Gyldensted C, et al. (2000) Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs: comparison with [(15)O]H(2)O positron emission tomography. Stroke 31(8):1958–1964

    PubMed  CAS  Google Scholar 

  50. Mukherjee P, Kang HC, Videen TO, et al. (2003) Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. Am J Neuroradiol 24(5):862–871

    PubMed  Google Scholar 

  51. Nasel C, Kronsteiner N, Schindler E, et al. (2004) Standardized time-to-peak in ischemic and regular cerebral tissue measured with perfusion MR imaging. Am J Neuroradiol 25(6):945–950

    PubMed  Google Scholar 

  52. Sobesky J, Weber OZ, Lenhardt FG, et al. (2004) Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke 35(12):2843–2847

    Article  PubMed  CAS  Google Scholar 

  53. Lupo JM, Lee MC, Han ET, et al. (2005) Feasibility of dynamic susceptibility-weighted perfusion MRI at 3T using a standard head coil and 8-channel phased-array coil with and without SENSE reconstruction. Proc Intl Soc Mag Reson Med 13:741

    Google Scholar 

  54. Larsson HB, Berg HK, Vangberg T, et al. (2005) Measurement of CBF and PS product in brain tumor patients using T1 w dynamic contrast enhanced MRI at 3 tesla. Proc Intl Soc Mag Reson Med 13:2082

    Google Scholar 

  55. Morgan PS, George MS, Kozel FA, et al. (2005) Dynamic contrast enhanced whole brain perfusion using a rapid 3D T1-weighted sequence at 1.5T and 3T. Proc Intl Soc Mag Reson Med 13:1257

    Google Scholar 

  56. Wang J, Alsop DC, Li L, et al. (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 48:242–254

    Article  PubMed  Google Scholar 

  57. Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604

    Article  PubMed  CAS  Google Scholar 

  58. Heiland S, Kreibich W, Reith W, et al. (1998) Comparison of echo-planar sequences for perfusion-weighted MRI: which is best? Neuroradiology 40:216–221

    Article  PubMed  CAS  Google Scholar 

  59. Liu G, Sobering G, Duyn J, et al. (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768

    PubMed  CAS  Google Scholar 

  60. Mattay VS, Frank JA, Duyn JH, et al. (1996) Three-dimensional „BURST“ functional magnetic resonance imaging: initial clinical applications. Acad Radiol 3(Suppl 2):S379–S383

    PubMed  Google Scholar 

  61. van Gelderen P, Grandin C, Petrella JR, et al. (2000) Rapid three-dimensional MR imaging method for tracking a bolus of contrast agent through the brain. Radiology 216: 603–608

    PubMed  Google Scholar 

  62. Grandin CB (2003) Assessment of brain perfusion with MRI: methodology and application to acute stroke. Neuroradiology 45:755–766

    Article  PubMed  CAS  Google Scholar 

  63. Thilmann O, Larsson EM, Bjorkman-Burtscher IM, et al. (2004) Effects of echo time variation on perfusion assessment using dynamic susceptibility contrast MR imaging at 3 Tesla. Magn Reson Imaging 22(7):929–935

    Article  PubMed  CAS  Google Scholar 

  64. Shin W, Sakaie K, Cashen TA, et al. (2005) High field (3.0T) CBF imaging using spin-echo EPI and parallel imaging. Proc Intl Soc Mag Reson Med 13:1124

    Google Scholar 

  65. Keston P, Murray AD, Jackson A (2003) Cerebral perfusion imaging using contrast-enhanced MRI. Clin Radiol 58: 505–513

    Article  PubMed  CAS  Google Scholar 

  66. Tombach B, Benner T, Reimer P, et al. (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 226:880–888

    PubMed  Google Scholar 

  67. Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532

    PubMed  Google Scholar 

  68. Flacke S, Urbach H, Block W, et al. (2002) Perfusion and molecular diffusion-weighted MR imaging of the brain: in vivo assessment of tissue alteration in cerebral ischemia. Amino Acids 23:309–316

    Article  PubMed  CAS  Google Scholar 

  69. Baird AE, Lovblad KO, Dashe JF, et al. (2000) Clinical correlations of diffusion and perfusion lesion volumes in acute ischemic stroke. Cerebrovasc Dis 10:441–448

    Article  PubMed  CAS  Google Scholar 

  70. Fiehler J, Knudsen K, Kucinski T, et al. (2004) Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke 35:514–519

    Article  PubMed  Google Scholar 

  71. Hillis AE, Wityk RJ, Beauchamp NJ, et al. (2004) Perfusion-weighted MRI as a marker of response to treatment in acute and subacute stroke. Neuroradiology 46:31–39

    Article  PubMed  CAS  Google Scholar 

  72. Benner T, Reimer P, Erb G, et al. (2000) Cerebral MR perfusion imaging: first clinical application of a 1 M gadolinium chelate (Gadovist 1.0) in a double-blinded randomized dose-finding study. J Magn Reson Imaging 12:371–380

    Article  PubMed  CAS  Google Scholar 

  73. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1):37–45

    PubMed  CAS  Google Scholar 

  74. Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16(6): 1236–1249

    Article  PubMed  CAS  Google Scholar 

  75. Jahng GH, Song E, Zhu XP, et al. (2005) Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging. Radiology 234(3):909–916

    PubMed  Google Scholar 

  76. Ye FQ, Berman KF, Ellmore T, et al. (2000) H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44(3):450–456

    Article  PubMed  CAS  Google Scholar 

  77. Edelman RR, Siewert B, Darby DG, et al. (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192(2):513–520

    PubMed  CAS  Google Scholar 

  78. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34(3):293–301

    PubMed  CAS  Google Scholar 

  79. Wong EC, Buxton RB, Frank LR (1999) Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am 9(2):333–342

    PubMed  CAS  Google Scholar 

  80. Wang J, Alsop DC, Song HK, et al. (2003) Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 50(3):599–607

    Article  PubMed  Google Scholar 

  81. Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39(5):702–708

    PubMed  CAS  Google Scholar 

  82. Buxton RB, Frank LR, Wong EC (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40(3):383–396

    PubMed  CAS  Google Scholar 

  83. Guenther M, Oshio K, Feinberg D (2004) Very fast 3D perfusion measurement with high signal-to-noise ratio using single-shot 3D GRASE: Application to improve perfusion quantitation. Proc Intl Soc Mag Reson Med 12:714

    Google Scholar 

  84. Wong E, Liu T, Sidaros K, et al. (2002) Velocity selective arterial spin labeling. Proc Intl Soc Mag Reson Med 10:621

    Google Scholar 

  85. Wu WC, Won EC (2005) Intravascular effects in velocity-selective arterial spin labeling: the choice of transit delay and cutoff velocity. Proc Intl Soc Mag Reson Med 13:1156

    Google Scholar 

  86. Duhamel G, de Bazelaire C, Alsop DC (2003) Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med 50(1): 145–153

    Article  PubMed  Google Scholar 

  87. Wong E (2004) Time efficient CSF suppressed velocity selective ASL using a T2-FLAIR preparation. Proc Intl Soc Mag Reson Med 12:711

    Google Scholar 

  88. Manka CA, Traeber F, Block W, et al. (2005) Continuous arterial spin labeling (CASL) in clinical practice at 3.0 T — results on reliability and quantification. Proc Intl Soc Mag Reson Med 13:1141

    Google Scholar 

  89. Fernandez-Seara MA, Wang J, Wang Z, et al. (2005) Continuous arterial spin labelling perfusion measurements using single shot 3D GRASE at 3T. Proc Intl Soc Mag Reson Med 13:1160

    Google Scholar 

  90. Last D, Alsop DC, Marquis RP, et al. (2005) Effects of type II diabetes on cerebral vasoregulation using continuous arterial spin labeling MRI at 3 Tesla. Proc Intl Soc Mag Reson Med 13:1139

    Google Scholar 

  91. Talagala S, Chuang KH, Chesnick S, et al. (2004) High sensitivity CASL perfusion MRI at 3T using a 16 channel receiver coil array. Proc Intl Soc Mag Reson Med 12:717

    Google Scholar 

  92. Wang J, Zhang Y, Wolf R, et al. (2004) Single coil amplitude modulated continuous arterial spin labeling perfusion MR at 3.0 T. Proc Intl Soc Mag Reson Med 12:1363

    Google Scholar 

  93. Zaharchuk G, Ledden PJ, Kwong KK, et al. (1999) Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 41(6):1093–1098

    Article  PubMed  CAS  Google Scholar 

  94. Werner R, Alfke K, Schaeffter T et al. (2004) Spatially selective perfusion imaging applying continuous arterial spin labeling. Proc Intl Soc Mag Reson Med 12:715

    Google Scholar 

  95. Song HK, Zhang Y, Wolf RL, et al. (2004) Unilateral labeling PASL technique for vascular territory perfusion imaging. Proc Intl Soc Mag Reson Med 12:1358

    Google Scholar 

  96. Hendrikse J, van Raamt AF, van der Graaf Y, et al. (2005) Distribution of cerebral blood flow in the circle of Willis. Radiology 235(1):184–189

    PubMed  Google Scholar 

  97. Hendrikse J, van der Grond J, Lu H, et al. (2004) Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35(4):882–887

    Article  PubMed  Google Scholar 

  98. Hendrikse J, van Osch MJ, van der Zwan A, et al. (2005) Altered flow territories after extracranial to intracranial bypass surgery: clinical implementation of selective arterial spin labeling MRI. Proc Intl Soc Mag Reson Med 13:1137

    Google Scholar 

  99. van Laar PJ, Hendrikse J, Golay X, et al. (2005) In-vivo flow territory mapping of major brain feeding arteries: a population study with selective arterial spin labeling MRI. Proc Intl Soc Mag Reson Med 13:1134

    Google Scholar 

  100. Nakatani A, Shiomi B, Oka S, et al. (2004)Measurement of cerebral blood flow in dogs: comparison of magnetic resonance imaging using H217O with positron emission tomography using H215O. Proc Intl Soc Mag Reson Med 12:1404

    Google Scholar 

  101. Mazzanti M, Sun Y, Mansour J, et al. (2004) Functional brain imaging using hyperpolarized 129Xe. Proc Intl Soc Mag Reson Med 12:768

    Google Scholar 

  102. Golman K, Aredenkjarer-Larsen JH, Petersson JS, et al. (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci USA 100:10435–10439

    Article  PubMed  CAS  Google Scholar 

  103. Johansson E, Mansson S, Wirestam R, et al. (2004) Cerebral perfusion assessment by bolus tracking using hyperpolarized carbon-13. Magn Reson Med 51:464–472

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giannatempo, G.M. et al. (2006). 3.0 T Perfusion Studies. In: Salvolini, U., Scarabino, T. (eds) High Field Brain MRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31776-7_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-31776-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31775-3

  • Online ISBN: 978-3-540-31776-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics