Skip to main content

High-Field Strength MRI (3.0 T or More) in White Matter Diseases

  • Chapter
High Field Brain MRI

15.4 Conclusions

In white matter conditions, high-field MRI does the same as lower field MRI, but does it better. Although this simplified description might be correct, it would not reflect the full range of advantages and exciting possibilities that come with the development of higher field MR systems. MRI has been, and still is, an invaluable tool to study MS in vivo. High-field MRI will certainly further strengthen the role of MRI as the most sensitive paraclinical tool available for early diagnosis of MS. Both conventional and non-conventional MR techniques will take advantage of the use of high-field MR systems to study MS, as well as other white matter diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold DL, Wolinsky JS, Matthews PM, Falini A (1998) The use of magnetic resonance spectroscopy in the evaluation of the natural history of multiple sclerosis. J Neurol Neurosurg Psychiatry 64Suppl 1:S94–101

    Google Scholar 

  2. Au Duong MV, Boulanouar K, Audoin B, et al. (2005) Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis. Neuroimage 24(2):533–538

    Article  Google Scholar 

  3. Bachmann R, Reilmann R, Kraemer S, et al. (2003) Multiple sclerosis: comparative MR-imaging at 1.5 and 3.0 Tesla [abstract 1465]. Presented at: Radiological Society of North America RSNA 2003 89th Scientific Assembly and Meeting; December 5, 2003; Chicago

    Google Scholar 

  4. Bakshi R, Benedict RH, Bermel RA, et al. (2002) T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 59(1):62–68

    Article  PubMed  Google Scholar 

  5. Bammer R, Augustin M, Strasser-Fuchs S, et al. (2000) Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 44(4):583–591

    Article  PubMed  CAS  Google Scholar 

  6. Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15(3):239–245

    Article  PubMed  Google Scholar 

  7. Castriota-Scanderbeg A, Fasano F, Hagberg G, et al. (2003) Coefficient D(av) is more sensitive than fractional anisotropy in monitoring progression of irreversible tissue damage in focal nonactive multiple sclerosis lesions. AJNR Am J Neuroradiol 24(4):663–670

    PubMed  Google Scholar 

  8. Charil A, Zijdenbos AP, Taylor J, et al. (2003) Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. Neuroimage 19(3):532–544

    Article  PubMed  Google Scholar 

  9. Chen W, Ugurbil K (1999) High spatial resolution functional magnetic resonance imaging at very-high-magnetic field. Top Magn Reson Imaging 10(1):63–78

    PubMed  CAS  Google Scholar 

  10. Chiaravalloti N, Hillary F, Ricker J, et al. (2005) Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI. J Clin Exp Neuropsychol 27(1):33–54

    PubMed  Google Scholar 

  11. Compston A, Coles A (2002) Multiple sclerosis. Lancet 359(9313):1221–1231

    Article  PubMed  Google Scholar 

  12. Craelius W, Migdal MW, Luessenhop CP, et al. (1982) Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med 106(8):397–399

    PubMed  CAS  Google Scholar 

  13. Erskine MK, Cook LL, Riddle KE, et al. (2005) Resolution-dependent estimates of multiple sclerosis lesion loads. Can J Neurol Sci 32(2):205–212

    PubMed  CAS  Google Scholar 

  14. Filippi M, Rocca MA (2003) Disturbed function and plasticity in multiple sclerosis as gleaned from functional magnetic resonance imaging. Curr Opin Neurol 16(3):275–282

    Article  PubMed  Google Scholar 

  15. Filippi M, Rocca MA, Comi G (2003a) The use of quantitative magnetic-resonance-based techniques to monitor the evolution of multiple sclerosis. Lancet Neurol 2(6):337–346

    Article  PubMed  CAS  Google Scholar 

  16. Fog T (1965) The topography of plaques in multiple sclerosis. Acta Neurol Scand 15:1–161

    CAS  Google Scholar 

  17. Gallo A, Rovaris M, Riva R, et al. (2005) Diffusion-tensor magnetic resonance imaging detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earliest clinical stage of multiple sclerosis. Arch Neurol 62(5):803–808

    Article  PubMed  Google Scholar 

  18. Gonen O, Moriarty DM, Li BS, et al. (2002) Relapsing-remitting multiple sclerosis and whole-brain N-acetylaspartate measurement: evidence for different clinical cohorts initial observations. Radiology 225(1):261–268

    PubMed  CAS  Google Scholar 

  19. Hasan KM, Narayana PA (2005) DTI parameter optimization at 3.0 T: potential application in entire normal human brain mapping and multiple sclerosis research. Medica Mundi 49(1):30–45

    Google Scholar 

  20. Hasan KM, Gupta RK, Santos RM, et al. (2005) Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. J Magn Reson Imaging 21(6):735–743

    Article  PubMed  Google Scholar 

  21. Hattori N, Abe K, Sakoda S, Sawada T (2002) Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease. Neuroreport 13(1):183–186

    Article  PubMed  CAS  Google Scholar 

  22. Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Scylloinositol in normal aging human brain: 1H magnetic resonance spectroscopy study at 4 Tesla. NMR Biomed 18(1):51–55

    Article  PubMed  Google Scholar 

  23. Kangarlu A, Burgess RE, Zhu H, et al. (1999) Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 17(10):1407–1416

    Article  PubMed  CAS  Google Scholar 

  24. Kangarlu A, Rammohan KW, Bourekas EC, Chakeres DW (2002) In-vivo microscopic imaging of multiple sclerosis with high field MRI. In: Filippi M, Comi G (eds) New frontiers of MR-based techniques in MS. Springer, Berlin Heidelberg New York

    Google Scholar 

  25. Kangarlu A, Rammohan KW, Bourekas EC, RayChaudhry A (2004) Imaging of cortical lesions in multiple sclerosis. Proceedings of 12th Meeting of the International Society of Magnetic Resonance in Medicine. Kyoto, Japan

    Google Scholar 

  26. Keiper MD, Grossman RI, Hirsch JA, et al. (1998) MR identification of white matter abnormalities in multiple sclerosis: a comparison between 1.5 T and 4 T. AJNR Am J Neuroradiol 19(8):1489–1493

    PubMed  CAS  Google Scholar 

  27. Larsson HB, Thomsen C, Frederiksen J, et al. (1992) In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis. Magn Reson Imaging 10(1):7–12

    Article  PubMed  CAS  Google Scholar 

  28. Larsson EM, Englund E, Sjobeck M, et al. (2004) MRI with diffusion tensor imaging post-mortem at 3.0 T in a patient with frontotemporal dementia. Dement Geriatr Cogn Disord 17(4):316–319

    Article  PubMed  Google Scholar 

  29. Le Bihan D, Mangin JF, Poupon C, et al. (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546

    Article  PubMed  Google Scholar 

  30. Lee M, Reddy H, Johansen-Berg H, et al. (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47(5):606–613

    Article  PubMed  CAS  Google Scholar 

  31. Levine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci 1012:252–266

    Article  PubMed  CAS  Google Scholar 

  32. Mason GF, Pan JW, Ponder SL, et al. (1994) Detection of brain glutamate and glutamine in spectroscopic images at 4.1 T. Magn Reson Med 32(1):142–145

    PubMed  CAS  Google Scholar 

  33. McDonald WI, Compston A, Edan G, et al. (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127

    Article  PubMed  CAS  Google Scholar 

  34. Miller DH (1996) Guidelines for MRI monitoring of the treatment of multiple sclerosis: recommendations of the US Multiple Sclerosis Society’s task force. Mult Scler 1(6):335–338

    PubMed  CAS  Google Scholar 

  35. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies — a technical review. NMR Biomed 15(7–8):468–480

    Article  PubMed  Google Scholar 

  36. Novak P, Novak V, Kangarlu A, et al. (2001) High resolution MRI of the brainstemat 8 T. J Comput Assist Tomogr 25(2):242–246

    Article  PubMed  CAS  Google Scholar 

  37. Oreja-Guevara C, Rovaris M, Iannucci G, et al. (2005) Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study. Arch Neurol 62(4):578–584

    Article  PubMed  Google Scholar 

  38. Oz G, Tkac I, Charnas LR, et al. (2005) Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology 64(3):434–441

    PubMed  CAS  Google Scholar 

  39. Pan JW, Hetherington HP, Vaughan JT, et al. (1996) Evaluation of multiple sclerosis by 1H spectroscopic imaging at 4.1 T. Magn Reson Med 36(1):72–77

    PubMed  CAS  Google Scholar 

  40. Pantano P, Iannetti GD, Caramia F, et al. (2002) Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 125(7):1607–1615

    Article  PubMed  Google Scholar 

  41. Pfefferbaum A, Adalsteinsson E, Sullivan EV (2005) Frontal circuitry degradation marks healthy adult aging: Evidence from diffusion tensor imaging. Neuroimage 26(3):891–899

    Article  PubMed  Google Scholar 

  42. Reddy H, Narayanan S, Woolrich M, et al. (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125(12):2646–2657

    Article  PubMed  CAS  Google Scholar 

  43. Robitaille PM, Abduljalil AM, Kangarlu A (2000) Ultra high resolution imaging of the human head at 8 tesla: 2K × 2K for Y2K. J Comput Assist Tomogr 24(1):2–8

    Article  PubMed  CAS  Google Scholar 

  44. Rocca MA, Gallo A, Colombo B, et al. (2004) Pyramidal tract lesions and movement-associated cortical recruitment in patients with MS. Neuroimage 23(1):141–147

    Article  PubMed  Google Scholar 

  45. Rovaris M, Filippi M (1999) Magnetic resonance techniques to monitor disease evolution and treatment trial outcomes in multiple sclerosis. Curr Opin Neurol 12(3):337–344

    Article  PubMed  CAS  Google Scholar 

  46. Schenck JF, Zimmerman EA (2004) High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 17(7):433–445

    Article  PubMed  CAS  Google Scholar 

  47. Schubert F, Seifert F, Elster C, et al. (2002) Serial 1H-MRS in relapsing-remitting multiple sclerosis: effects of interferon-beta therapy on absolute metabolite concentrations. MAGMA 14(3):213–222

    PubMed  CAS  Google Scholar 

  48. Sicotte NL, Voskuhl RR, Bouvier S, et al. (2003) Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest Radiol 38(7):423–427

    Article  PubMed  Google Scholar 

  49. Srinivasan R, Sailasuta N, Hurd R, et al. (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128(5):1016–1025

    Article  PubMed  Google Scholar 

  50. Staffen W, Mair A, Zauner H, et al. (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125(6):1275–1282

    Article  PubMed  CAS  Google Scholar 

  51. Tan IL, van Schijndel RA, Pouwels PJ, et al. (2000) MR venography of multiple sclerosis. AJNR Am J Neuroradiol 21(6):1039–1042

    PubMed  CAS  Google Scholar 

  52. Tjoa CW, Benedict RH, Weinstock-Guttman B, et al. (2005) MRI T2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis. J Neurol Sci 234(1–2):17–24

    Article  PubMed  CAS  Google Scholar 

  53. Valsasina P, Rocca MA, Agosta F, et al. (2005) Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. Neuroimage 26(3):822–828

    Article  PubMed  Google Scholar 

  54. Vinogradov E, Degenhardt A, Smith D, et al. (2005) High-resolution anatomic, diffusion tensor, and magnetization transfer magnetic resonance imaging of the optic chiasm at 3T. J Magn Reson Imaging 22(2):302–306

    Article  PubMed  Google Scholar 

  55. Werring DJ, Clark CA, Barker GJ, et al. (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632

    PubMed  CAS  Google Scholar 

  56. Werring DJ, Bullmore ET, Toosy AT, et al. (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68(4):441–449

    Article  PubMed  CAS  Google Scholar 

  57. Wolff SD, Balaban RS (1994) Magnetization transfer imaging: practical aspects and clinical applications. Radiology 192(3):593–599

    PubMed  CAS  Google Scholar 

  58. Wylezinska M, Cifelli A, Jezzard P, et al. (2003) Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 60(12):1949–1954

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charil, A., Filippi, M., Falini, A. (2006). High-Field Strength MRI (3.0 T or More) in White Matter Diseases. In: Salvolini, U., Scarabino, T. (eds) High Field Brain MRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31776-7_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-31776-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31775-3

  • Online ISBN: 978-3-540-31776-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics