Skip to main content

Ring-Resonator-Based Wavelength Filters

  • Chapter
Wavelength Filters in Fibre Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 123))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ashkin and J. M. Dziedzic: “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).

    Article  ADS  Google Scholar 

  2. H. B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo: “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986)

    Article  ADS  Google Scholar 

  3. S. C. Hill, D. H. Leach, and R. K. Chang: “Third-order sum-frequency generation in droplets: Model with numerical results for third-harmonic generation,” J. Opt. Soc. Am. B 10, 16–33 (1993)

    Article  ADS  Google Scholar 

  4. M. M. Mazumder, S. C. Hill, D. Q. Chowdhury, and R. K. Chang: “Dispersive optical bistability in a dielectric sphere,” J. Opt. Soc. Am. B 12, 297–310 (1995)

    Article  ADS  Google Scholar 

  5. J. Haavisto and G. A. Pajer: “Resonance effects in low-loss ring waveguides,” Opt. Lett. 5, 510–512 (1980)

    Article  ADS  Google Scholar 

  6. W. Weiershausen and R. Zengerle: “Photonic highway switches based on ring resonators used as frequency-selective components,” Appl. Opt. 35, 5967–5978 (1996)

    Article  ADS  Google Scholar 

  7. B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun: “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12, 323–325 (2000)

    Article  ADS  Google Scholar 

  8. S. Suzuki, K. Shuto, and Y. Hibino: “Integrated-optic ring resonators with two stacked layers of silica waveguide on Si,” IEEE Photon. Technol. Lett. 4, 1256–1258 (1992)

    Article  ADS  Google Scholar 

  9. J. H. Zhao and C. K. Madsen: Optical Filter Design and Analysis (Wiley, New York, 1999).

    Google Scholar 

  10. A. Driessen, D. H. Geuzebroek, H. J. W. M. Hoekstra, H. Kelderman, E. J. Klein, D. J. W. Klunder, C. G. H. Roeloffzen, F. Susanto, E. Krioukov, C. Otto, H. Gersen, N. F. van Hulst, and L. Kuipers: “Microresonators as building blocks for VLSI photonics,” AIP Conf. Proc. 709 (F. Michelotti, A. Driessen, and M. Bertolotti, eds.), 1–18 (2003)

    Google Scholar 

  11. F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and T. J. A. Popma: “Experimental study of integrated-optics microcavity resonators: Toward an alloptical switching device,” Appl. Phys. Lett. 71, 747–749 (1997)

    Article  ADS  Google Scholar 

  12. E. J. Klein, D. H. Geuzebroek, H. Kelderman, and A. Driessen: “Wavelength-selective switch using thermally tunable microring resonators,” Proc. IEEE Laser & Electro-Optics Soc. Annual Meeting (LEOS 2003) (Tucson, AZ, USA, 2003) paper MM1 (2003)

    Google Scholar 

  13. J. T. Verdeyen: Laser Electronics (Prentice Hall, New Jersey, 1995)

    Google Scholar 

  14. H. Kogelnik: “Theory of optical waveguides” in Guided-Wave Optoelectronics (T. Tamir, ed.), Chap. 2 (Springer, Heidelberg, Berlin, 1988)

    Google Scholar 

  15. B. E. Little and S. T. Chu: “Theory of polarization rotation and conversion in vertically coupled microresonators,” IEEE Photon. Technol. Lett. 12, 401–403 (2000)

    Article  ADS  Google Scholar 

  16. M. C. Larciprete, E. J. Klein, A. Belardini, D. H. Geuzebroek, A. Driessen, and F. Michelotti: “Polarization conversion in vertically coupled Si3N4/SiO2 microring resonators,” AIP Conf. Proc. 709 (F. Michelotti, A. Driessen, and M. Bertolotti, eds., 415–416 (2003)

    Google Scholar 

  17. A. Melloni, F. Morichetti, and M. Martinelli: “Polarization conversion in ring resonator phase shifters,” Optics Lett. 29, 2785–2787 (2004)

    Article  ADS  Google Scholar 

  18. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati: “Beam propagation modeling of polarization rotation in deeply etched semiconductor bent waveguides,” IEEE Photon. Technol. Lett. 13, 681–683 (2001)

    Article  ADS  Google Scholar 

  19. K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck: “Silicon oxinitride — a versatile material for integrated optics applications,” J. Electrochem. Soc. 149, F85–F91 (2002)

    Article  Google Scholar 

  20. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo: “Very high order microring resonator filters for WDM application,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004)

    Article  ADS  Google Scholar 

  21. Y. Kokubun, S. Kubota, and S. T. Chu: “Polarisation-independent vertically coupled microring resonator filter,” Electron. Lett. 37, 90–92 (2001)

    Article  Google Scholar 

  22. D. J. W. Klunder, C. G. H. Roeloffzen, and A. Driessen: “A novel polarization-independent wavelength-division-multiplexing filter based on cylindrical microresonators,” IEEE J. Select. Topics Quantum Electron. 8, 1294–1299 (2002)

    Article  Google Scholar 

  23. J. Capmany and M. A. Muriel: “A new transfer-matrix formalism for the analysis of fiber ring resonators — compound coupled structures for FDMA demultiplexing,” J. Lightwave Technol. 8, 1904–1919 (1990).

    Article  ADS  Google Scholar 

  24. O. Schwelb: “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters — a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004)

    Article  ADS  Google Scholar 

  25. A. Vorckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz: “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003)

    Article  ADS  Google Scholar 

  26. D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen: “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001)

    ADS  Google Scholar 

  27. K. Oda, N. Takato, and H. Toba: “A wide-FSR wave-guide double-ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 9, 728–736 (1991)

    Article  ADS  Google Scholar 

  28. S. Suzuki, K. Oda, and Y. Hibino: “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol. 13, 1766–1771 (1995)

    Article  ADS  Google Scholar 

  29. O. Schwelb: “A design for a high finesse parallel-coupled microring resonator filter,” Microwave Opt. Technol. Lett. 38, 125–129 (2003)

    Article  Google Scholar 

  30. C2V, Enschede, The Netherlands. www.c2v.nl

    Google Scholar 

  31. G. Cusmai, F. Morichetti, P. Rosotti, R. Costa, and A. Melloni: “Circuit-oriented modelling of ring-resonators,” Optics and Quantum Electron. 37, 343–358 (2005)

    Article  Google Scholar 

  32. D. J. W. Klunder: Photon physics in integrated optics microresonators, (PhD Thesis, University of Twente, The Netherlands, 2002)

    Google Scholar 

  33. R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho: “Laterally coupled InP-based singlemode microracetrack notch filter,” IEEE Photon. Technol. Lett. 15, 1082–1084 (2003)

    Article  ADS  Google Scholar 

  34. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove: “FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997)

    Article  ADS  Google Scholar 

  35. M. B. J. Diemeer: “Polymeric thermo-optic space switches for optical communications,” Opt. Materials 9, 192–200 (1998)

    Article  ADS  Google Scholar 

  36. I. L. Gheorma and R. M. Osgood, Jr.: “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photon. Technol. Lett. 14, 795–797 (2002)

    Article  ADS  Google Scholar 

  37. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee: “Alloptical switching in a laterally coupled microring resonator by carier injection,” IEEE Photon. Technol. Lett. 15, 36–38 (2003)

    Article  ADS  Google Scholar 

  38. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson: “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004)

    Article  ADS  Google Scholar 

  39. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve and C. Otto: “Sensor based on an integrated optical microcavity,” Opt. Lett, 27, 512–514 (2002)

    Article  ADS  Google Scholar 

  40. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto: “Integrated optical microcavities for enhanced evanescent-wave spectroscopy,” Opt. Lett. 27, 1504–1506 (2002)

    Article  ADS  Google Scholar 

  41. D. H. Geuzebroek, E. J. Klein, H. Kelderman, and A Driessen: “Wavelength tuning and switching of a thermo-optic microring resonator,” Proc. 11 th Europ. Conf Integr. Optics (ECIO’03), Prague, Czech Republic, 395–398 (2003)

    Google Scholar 

  42. P. Rabiei and W. H. Steier: “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15, 1255–1258 (2003)

    Article  ADS  Google Scholar 

  43. M. B. J. Diemeer: “Organic and inorganic glasses for microring resonators,” AIP Conf. Proc. 709 (F. Michelotti, A. Driessen, and M. Bertolotti, eds.), 252–267 (2003)

    Google Scholar 

  44. P. Gunter: Nonlinear Optical Effects and Materials (Springer, Berlin, Heidelberg, 2000)

    Google Scholar 

  45. A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen: “A novel high-speed polymeric eo modulator based on a combination of a microring resonator and an MZI,” IEEE Photon. Technol. Lett. 17, 2074–2076 (2005)

    Article  ADS  Google Scholar 

  46. K. Djordjev, S. J. Choi, and P. D. Dapkus: “Active semiconductor microdisk devices,” J. Lightwave Technol. 20, 105–113 (2002)

    Article  ADS  Google Scholar 

  47. L. A. Coldren and S. W. Corzine: Diode lasers and photonic integrated circuits (Wiley Series in Microwave and Optical Engineering, Wiley, New York, 1995)

    Google Scholar 

  48. H. Haeiwa, T. Naganawa, and Y. Kokubun: “Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core,” IEEE Photon. Technol. Lett. 16, 135–137 (2004)

    Article  ADS  Google Scholar 

  49. R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel: “Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer based waveguides,” Appl. Phys. Lett. 85, 6104–6106 (2004)

    Article  ADS  Google Scholar 

  50. D. G. Rabus: Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP/InP (PhD Thesis, Berlin University of Technology, Germany, 2002)

    Google Scholar 

  51. M. C. Flemings, MR with MEMS, Sandia National Laboratory, www.sandia.gov

    Google Scholar 

  52. F. S. Tan: Integrated Optical Filters based on Microring Resonators, (PhD Thesis, University of Twente, The Netherlands, 2004)

    Google Scholar 

  53. D. Marcuse: Principles of Optical Fiber Measurements (Academic Press, New York, 1981)

    Google Scholar 

  54. D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen: “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005)

    Article  ADS  Google Scholar 

  55. A. Küng, J. Budin, L. Thévenaz, and Ph.A. Robert: “Optical fiber ring resonator characterization by optical time-domain reflectometry,” Opt. Lett. 22, 90–92 (1997)

    Article  ADS  Google Scholar 

  56. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho: “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000)

    Article  ADS  Google Scholar 

  57. R. Orta, P. Savi, R. Tascone, and D. Trinchero: “Synthesis of multiple-ringresonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447–1449 (1995)

    Article  ADS  Google Scholar 

  58. D. G. Rabus, M. Hamacher, and H. Heidrich: “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: Experiment and simulation,” Jpn. J. Appl. Phys. 41, 1186–1189 (2002)

    Article  ADS  Google Scholar 

  59. C. K. Madsen and J. H. Zhao: “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol. 14, 437–447 (1996)

    Article  ADS  Google Scholar 

  60. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo: “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004)

    Article  ADS  Google Scholar 

  61. A. Melloni: “Synthesis of a parallel-coupled ring-resonator filter,” Opt. Lett. 26, 917–919 (2001)

    Article  ADS  Google Scholar 

  62. S. T. Chu, B. E. Little, W. G. Pan, T. Kaneko, and Y. Kokubun: “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11, 1426–1428 (1999)

    Article  ADS  Google Scholar 

  63. G. Griffel: “Vernier effect in asymmetrical ring resonator arrays,” IEEE Photon. Technol. Lett. 12, 1642–1644 (2000)

    Article  ADS  Google Scholar 

  64. G. Griffel: “Synthesis of optical filters using ring resonator arrays,” IEEE Photon. Technol. Lett. 12, 810–812 (2000)

    Article  ADS  Google Scholar 

  65. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho: “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002)

    Article  ADS  Google Scholar 

  66. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil: “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344–346 (2000)

    Article  ADS  Google Scholar 

  67. C. J. Kaalund and G. Peng: “Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications,” J. Lightwave Technol. 22, 1548–1558 (2004)

    Article  ADS  Google Scholar 

  68. Little Optics, USA, www.littleoptics.com / www.nomadics.com/

    Google Scholar 

  69. S. T. Chu, B. E. Little, W. G. Pan, T. Kaneko, S. Sato, and Y. Kokubun: “An eightchannel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999)

    Article  ADS  Google Scholar 

  70. Z. Wang, W. Chen, and Y. J. Chen: “Unit cell design of crossbar switch matrix using micro-ring resonators,” Proc. 30 th Europ. Conf. Opt. Commun. (ECOC’04), Stockholm, Sweden, Vol. 3, 462–463 (2004)

    Google Scholar 

  71. LioniX BV, Enschede, the Netherlands; www.lionixbv.nl

    Google Scholar 

  72. S. Suzuki, K. Shuto, and Y. Hibino: “Integrated-optic ring resonators with two stacked layers of silica waveguide on Si,” IEEE Photon. Technol. Lett. 4, 1256–1259 (1992)

    Article  ADS  Google Scholar 

  73. E. J. Klein, D.H Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen: “Reconfigurable optical add-drop multiplexer using microring resonators,” Proc. 12 th Europ. Conf. Integr. Optics (ECIO’05), Grenoble, France, 180–183 (2005)

    Google Scholar 

  74. D. H. Geuzebroek, E. J. Klein, H. Kelderman, C. Bornholdt, and A. Driessen: “40 Gbit/s reconfigurable optical add-drop multiplexer based on microring resonators,” Proc. 31 st Europ. Conf. Opt. Commun. (ECOC’05), Glasgow, UK, 983–984 (2005)

    Google Scholar 

  75. Lambda Crossing, Israel, www.lambdax.com

    Google Scholar 

  76. J. Buus, D. J. Blumenthal, and M.-C. Amann: Tunable laser diodes and related optical sources, 2 nd ed. (Wiley, New York, 2004)

    Google Scholar 

  77. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu: “Box-like filter response by vertically series coupled microring resonator filter,” Proc. 27 th Europ. Conf. Opt. Commun. (ECOC’01), Amsterdam, NL, Vol. 4, 634–635 (2001)

    Google Scholar 

  78. K. Jinguji and M. Kawachi: “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995)

    Article  ADS  Google Scholar 

  79. G.-L. Bona, R. Germann, and B. J. Offrein: “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. & Dev. 47, 239–249 (2003)

    Article  Google Scholar 

  80. G. L. Bona, F. Horst, R. Germann, B. J. Offrein, and D. Wiesmann: “Tunable dispersion compensator realized in high-refractive-index-contrast SiON technology,” Proc. 28 th Europ. Conf. Opt. Commun. (ECOC’02), Copenhagen, Denmark, Vol. 2, paper 4.2.1 (2002)

    Google Scholar 

  81. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho: “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554–556 (2000)

    Article  ADS  Google Scholar 

  82. G. Griffel, J. H. Abeles, R. J. Menna, A. M. Braun, J. C. Connolly, and M. King: “Low-threshold InGaAsP ring lasers fabricated using bi-level dry etching,” IEEE Photon. Technol. Lett. 12, 146–148 (2000)

    Article  ADS  Google Scholar 

  83. R. Grover, P. Absil, V. Van, J. Hryniewicz, B. Little, O. King, L. Calhoun, F. Johnson, and P. Ho: “Vertically coupled GaInAsP InP microring resonators,” Opt. Lett. 26, 506–508 (2001)

    Article  ADS  Google Scholar 

  84. D. G. Rabus and M. Hamacher: “MMI coupled ring resonators in GaInAsP/InP,” IEEE Photon. Technol. Lett. 13, 812–814 (2001)

    Article  ADS  Google Scholar 

  85. K. Djordjev, Seung-J. Choi, Sang-J. Choi, and P. D. Dapkus: “High-Q vertically coupled InP microdisk resonators,” IEEE Photon. Technol. Lett. 14, 331–333 (2002)

    Article  ADS  Google Scholar 

  86. K. Djordjev, Seung-J. Choi, Sang-J. Choi, and P. D. Dapkus: “Novel active switching components based on semiconductor microdisk resonators,” Proc. 28 th Europ. Conf. Opt. Commun. (ECOC’02), Copenhagen, Denmark, Vol. 1, paper 2.3.5 (2002)

    Google Scholar 

  87. M. Hamacher, U. Troppenz, H. Heidrich, and D. G. Rabus: “Active ring resonators based on InGaAsP/InP,” Proc. SPIE Conf. Photonic Fabrication Europe, vol. 4947, 212–222 (2003)

    Google Scholar 

  88. Seung-J. Choi, Q. Yang, Z. Peng, Sang-J. Choi, and P. D. Dapkus: “High-Q buried heterostructure microring resonators,” OSA Conf. Lasers and Electro Optics (CLEO 2004), San Francisco, CA, USA, paper CThF1 (2004)

    Google Scholar 

  89. Z. Bian, B. Liu, and A. Shakouri: “InP-based passive ring-resonator-coupled lasers,” IEEE J. Quantum Electron. 39, 859–865 (2003)

    Article  ADS  Google Scholar 

  90. U. Troppenz, M. Hamacher, D. G. Rabus, and H. Heidrich: “All-active In-GaAsP/InP ring cavities for widespread functionalities in the wavelength domain,” Proc. 14 th Internat. Conf. Indium Phosphide and Related Materials (IPRM’02), Stockholm, Sweden, 475–478 (2002)

    Google Scholar 

  91. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho: “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002)

    Article  ADS  Google Scholar 

  92. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton: “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002)

    Article  ADS  Google Scholar 

  93. P. Rabiei and W. H. Steier: “Tunable polymer double micro-ring filter,” IEEE Photon. Technol. Lett. 15, 1255–1257 (2003)

    Article  ADS  Google Scholar 

  94. NAIS, Next-generation Active Integrated-optic Subsystems IST-2000-28018

    Google Scholar 

  95. Freeband Communications: “Broadband Photonics” www.freeband.nl

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geuzebroek, D.H., Driessen, A. (2006). Ring-Resonator-Based Wavelength Filters. In: Venghaus, H. (eds) Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences, vol 123. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31770-8_9

Download citation

Publish with us

Policies and ethics