Skip to main content

Dielectric Multilayer Filters

  • Chapter
Wavelength Filters in Fibre Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 123))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Strong: “On a method of decreasing the reflection from nonmetallic substances,” J. Opt. Soc. Am. 26, 73–74 (1936)

    ADS  Google Scholar 

  2. H. A. Macleod: Thin-Film Optical Filters (Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, 2001)

    Google Scholar 

  3. A. Thelen: Design of Interference Coatings (McGraw-Hill Book Company, New York, 1989)

    Google Scholar 

  4. P. Baumeister: Optical Coating Technology (SPIE Optical Engineering Press, Bellingham, WA, 2004)

    Google Scholar 

  5. J. D. Rancourt: Optical Thin Films: User Handbook (SPIE Optical Engineering Press, Bellingham, WA, 1996)

    Google Scholar 

  6. P. Yeh: Optical Waves in Layered Media (John Wiley and Sons, Hoboken, NJ, 2005)

    Google Scholar 

  7. A. Thelen: “Antireflection Coatings,” in Design of Interference Coatings, Chap. 4 (McGraw-Hill Book Company, New York, 1989)

    Google Scholar 

  8. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly: “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996)

    ADS  Google Scholar 

  9. P. Baumeister: “Reflection reducing coatings,” in Optical Coating Technology, Chap. 4 (SPIE Optical Engineering Press, Bellingham, WA, 2004)

    Google Scholar 

  10. U. Schallenberg, U. Schulz, and N. Kaiser: “Multicycle AR coatings: a theoretical approach,” Proc. SPIE 5250, 357–366 (2004)

    ADS  Google Scholar 

  11. Stevenson: “High performance antireflection coatings for telecommunications,” Proc. SPIE 5527, 79–92 (2004)

    ADS  Google Scholar 

  12. P. G. Verly: “Simple technique for the accurate design of square bandpass WDM interference filters,” Proc. SPIE 5250, 378–383 (2004)

    ADS  Google Scholar 

  13. A. V. Tikhonravov and M. K. Trubetskov: “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. 41, 3176–3182 (2002)

    ADS  Google Scholar 

  14. B. T. Sullivan and J. A. Dobrowolski: “Implementation of a numerical needle method for thin-film design,” Appl. Opt. 35, 5484–5492 (1996)

    ADS  Google Scholar 

  15. J. A. Dobrowolski: “Numerical methods for optical thin films,” Optics and Photonics News 8, 25–33 (1997)

    ADS  Google Scholar 

  16. M. Scobey, D. E. Spock, M. E. Grasis, and J. A. Beattie: “EDFA gain equalization using interference films,” NFOEC 1996, Technical Proceedings, Denver, CO, pp. 969–972 (1996)

    Google Scholar 

  17. M. Tilsch, C. A. Hulse, K. D. Hendrix, and R. B. Sargent: “Design and demonstration of a thin-film based gain equalization filter for C-band EDFAs,” NFOEC 2000, Technical Proceedings, 390–395 (2000)

    Google Scholar 

  18. P. G. Verly: “Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization,” Appl. Opt. 41, 3092–3096 (2002)

    ADS  Google Scholar 

  19. A. Thelen, M. Tilsch, A. V. Tikhonravov, M. K. Trubestskov, and U. Brauneck: “Topical Meeting on Optical Interference Coatings (OIC’2001): design contest results,” Appl. Opt. 41, 3022–3038 (2002)

    ADS  Google Scholar 

  20. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher: “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1403 (1998)

    ADS  Google Scholar 

  21. G. Lenz and C. K. Madsen: “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248–1254 (1998)

    ADS  Google Scholar 

  22. R. B. Sargent: “Recent advances in thin film filters,” Optical Fiber Communication Conference, 2004 (OFC 2004), TuD6.

    Google Scholar 

  23. J. A. Buck: Fundamentals of Optical Fibers (John Wiley and Sons, New York, NY, 1995)

    Google Scholar 

  24. R. M. Fortenberry, M. E. Wescott, L. P. Ghislain, and M. A. Scobey: “Low chromatic dispersion thin film DWDM filters for 40 Gb/s transmission systems,” Optical Fiber Communication Conference and Exhibit, 2002 (OFC 2002), pp. 319–320

    Google Scholar 

  25. C. A. Hulse, K. D. Hendrix, F. K. Zernik, M. Tilsch, G. Ockenfuss, R. B. Sargent, A. Zhao, H. Pinkney, and S. Moffat: “Demonstration of a novel low-dispersion thin-film DWDM filter for high data rate applications,” Optical Interference Coatings (OIC’04), OSA Tech. Digest (Opt. Soc. America, Washington, DC, 2004), ThD7

    Google Scholar 

  26. C. Madsen and G. Lenz: “Optical all-pass filters for phase design with applications for dispersion control,” Photon. Technol. Lett. 10, 994–996 (1998)

    ADS  Google Scholar 

  27. T. D. Noe: “Design of reflective phase compensator filters for telecommunications,” Appl. Opt. 41, 3183–3186 (2002)

    ADS  Google Scholar 

  28. M. Tilsch, C. A. Hulse, F. K. Zernik, R. A. Modavis, C. J. Addiego, R. B. Sargent, N. A. O’Brien, H. Pinkney, and A. V. Turukhin: “Experimental demonstration of thin-film dispersion compensation for 50-GHz filters,” IEEE Photon. Technol. Lett. 15, 66–68 (2003)

    ADS  Google Scholar 

  29. M. Jablonski, Y. Takushima, and K. Kikuchi: “The realization of all-pass filters for third-order dispersion compensation in ultrafast optical fiber transmission systems,” J. Lightwave Technol. 19, 1194–1205 (2001)

    ADS  Google Scholar 

  30. M. Jablonski, K. Sato, D. Tanaka, H. Yaguchi, S. Y. Yet, K. Furuki, K. Yamada, B. Buchholz, and K. Kikuchi: “A compact thin-film-based all-pass device for the compensation of the in-band dispersion in FBG filters,” IEEE Photon. Technol. Lett. 15, 1725 (2003).

    ADS  Google Scholar 

  31. B. E. A. Saleh and M. C. Teich: Fundamentals of Photonics (John Wiley and Sons, New York, NY, 1991)

    Google Scholar 

  32. D. Marcuse: “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56,703–718 (1977)

    Google Scholar 

  33. W. J. Tomlinson: “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2182–2194 (1977)

    ADS  Google Scholar 

  34. W. J. Tomlinson: “Applications of GRIN-rod lenses in optical fiber communication systems,” Appl. Opt. 19, 1127–1139 (1980)

    ADS  Google Scholar 

  35. Y. C. Si, G. S. Duck, J. Ip, and N. Teitelbaum: “Narrow band filter and method of making same,” U.S. Patent 5,612,824 (March 18, 1997)

    Google Scholar 

  36. M. A. Scobey and D. E. Spock: “Passive DWDM components using microplasma optical interference filters,” Optical Fiber Communication Conference, 1996 (OFC’96), pp. 242–243

    Google Scholar 

  37. M. McGuirk and C. K. Carniglia: “An angular spectrum representation to the Goos-Hanchen shift,” J. Opt. Soc. Am. 67, 103–107 (1977)

    ADS  Google Scholar 

  38. C. W. Hsue and T. Tamir: “Lateral displacement and distortion of beams incident upon a transmitting-layer configuration,” J. Opt. Soc. Am. A 2, 978–988 (1985)

    ADS  Google Scholar 

  39. R. E. Klinger, C. A. Hulse, and R. B. Sargent: “Beam displacement and distortion effects in narrowband optical thin film filters,” Optical Interference Coatings (OIC’04), OSA Tech. Digest (Opt. Soc. America, Washington, DC, 2004), ThE5

    Google Scholar 

  40. C. K. Carniglia, D. G. Jensen, and A. J. Fielding: “Lateral shift and internal electric fields in multi-cavity narrow-band-pass filters,” Optical Interference Coatings (OIC’04), OSA Tech. Digest (Opt. Soc. America, Washington, DC, 2004), ThE4

    Google Scholar 

  41. C. A. Hulse, R. E. Klinger, and R. B. Sargent: “Wavelength-dependent beam displacement in narrowband optical thin film filters,” 10th Microoptics Conference (MOC’04), Jena, Germany, C10 (2004)

    Google Scholar 

  42. J. W. Goodman: Introduction to Fourier Optics (McGraw-Hill, Columbus, OH, 1996)

    Google Scholar 

  43. C. A. Hulse, R. E. Klinger, and R. B. Sargent: “Optical coupler device for dense wavelength division multiplexing,” U.S. Patent 6,215,924 (April 10, 2001)

    Google Scholar 

  44. P. J. Martin and R. P. Netterfield: “Optical Films Produced By Ion-Based Techniques,” in Progress in Optics Vol. 23 (E. Wolf, ed.), (Elsevier, New York, 1986)

    Google Scholar 

  45. http://www.nsgamerica.com/press/dsp_view.cfm?specialid=140

    Google Scholar 

  46. http://www.us.schott.com/optics_devices/english/products/dwdm.html

    Google Scholar 

  47. http://www.hoyaoptics.com/specialty_glass/wdm_substrate.htm

    Google Scholar 

  48. http://www.oharacorp.com/swf/ps.html

    Google Scholar 

  49. D. J. Smith: “Modeling of modular defects in thin films for various deposition techniques,” Proc. SPIE 821, 120–128 (1987)

    Google Scholar 

  50. R. J. Trench, R. Chow, and M. R. Kozlowski: “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994)

    ADS  Google Scholar 

  51. E. Ritter: “Dielectric film materials for optical applications,” in Physics of Thin Films 8 (G. Hass, M. H. Franscombe, and R. W. Hoffman, eds.), 1–49 (Academic Press, New York, 1975).

    Google Scholar 

  52. N. A. O’Brien, M. J. Cumbo, K. D. Hendrix, R. B. Sargent and M. K. Tilsch: “Recent advances in thin film interference filters for telecommunications,” 44 th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, (Philadelphia, PA, 2001) pp. 255–261

    Google Scholar 

  53. J. S. Colligon: “Energetic condensation: Processes, properties, and products,” J. Vac. Sci. Technol. A 13, 1649–1657 (1995)

    ADS  Google Scholar 

  54. W. D. Westwood: Sputter Deposition (AVS, New York, 2003)

    Google Scholar 

  55. J. L. Vossen and W. Kern: Thin Film Processes II (Academic Press, New York, 1991)

    Google Scholar 

  56. F. Bovard: “Ion-Assisted Deposition,” in Thin Films For Optical Systems (F. Flory, ed.), p. 117 (Marcel Dekker, New York, 1995)

    Google Scholar 

  57. R. Faber, K. Zhang, and A. Zöller: “Design and manufacturing of WDM narrow band interference filters,” Proc. SPIE 4094, 58–64 (2000)

    ADS  Google Scholar 

  58. F. Zöller, S. Beißwenger, R. Gotzelmann, and K. Matl: “Plasma ion assisted deposition: A novel technique for the production of optical coatings,” Proc. SPIE 2253, 394–402 (1994)

    ADS  Google Scholar 

  59. Leybold Optics GmbH, Siemensstrasse 88, 63755 Alzenau, Germany

    Google Scholar 

  60. D. Gibson: “Fast Coatings for DWDM Filters,” Photonics Spectra 35 114 (2001)

    Google Scholar 

  61. D. T. Wei, H. R. Kaufman, and C.-C. Lee: “Ion beam sputtering,” in Thin Films For Optical Systems (F. R. Flory, ed.), Chap. 6 (Marcel Dekker, New York, 1995)

    Google Scholar 

  62. C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, and M. Watanabe: “High-rate dual ion beam sputtering deposition technology for Optical telecommunication filters,” 45 th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, (Buena Vista, FL, 2002) pp. 245–249

    Google Scholar 

  63. Veeco Instruments Inc., 100 Sunnyside Blvd. Ste. B, Woodbury, NY 11797, US

    Google Scholar 

  64. W. T. Pawlewicz, P. M. Martin, R. W. Knoll, and I. B. Mann: “Multilayer optical coating fabrication by dc magnetron reactive sputtering,” Proc. SPIE 678, Optical Thin Films II: New Developments, 134–140 (1986)

    Google Scholar 

  65. S. M. Edlou, A. Smajkiewicz, and G. A. Al-Jumaily: “Optical properties and environmental stability of oxide coatings deposited by reactive sputtering,” Appl. Opt. 32, 5601–5605 (1993)

    ADS  Google Scholar 

  66. M. A. Scobey: “Low pressure reactive magnetron sputtering apparatus and method,” U.S. Patent 5,851,365 (December 22, 1998)

    Google Scholar 

  67. G. S. Selwyn and C. A. Weiss: “Particle contamination formation in magnetron sputtering processes,” J. Vac. Sci. Technol. A 15, 2023–2028 (1997)

    ADS  Google Scholar 

  68. W. D. Sproul and B. E. Sylvia: “Multi-level control for reactive sputtering,” 45 th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, (Buena Vista, FL, 2002) pp. 11–15

    Google Scholar 

  69. S. Bauer, L. Klippe, U. Rothhaar, and M. Kuhr: “Optical multilayers for ultranarrow bandpass filters fabricated by PICVD,” Thin Solid Films 442, 189–193 (2003)

    ADS  Google Scholar 

  70. L. H. Domash: “Thermo-optically tunable thin film devices,” Proc. SPIE 5225, 1–6 (2003)

    ADS  Google Scholar 

  71. G. T. Mearini and L. Takacs: “Optical filter constructed by atomic layer deposition for next generation dense wavelength division multiplexers,” U.S. Patent Application, Pub. No. US2002/0003664 A1 (2002)

    Google Scholar 

  72. G. T. Mearini and L. Takacs: “Atomic layer controlled optical filter design for next generation dense wavelength division multiplexers,” U.S. Patent Application, Pub. No. US2002/0003665 A1 (2002)

    Google Scholar 

  73. A. Musset and I. C. Stevenson: “Thickness distribution of evaporated films,” Proc. SPIE 1270, 287–291 (1990)

    ADS  Google Scholar 

  74. M. Yang, J. Liu, Q. Chen, and B. Zhang: “Uniformity analysis and design optimization of multi-layer thin film filter used in fiber optics communication system,” Proc. SPIE 5250, 691–696 (2004)

    ADS  Google Scholar 

  75. C. Lee, K. Chuang, and J. Wu: “Thickness distribution of thin films deposited by ion beam sputtering,” Optical Interference Coatings (OIC’01), OSA Tech. Digest (Opt. Soc. America, Washington DC, 2001), MB4-2

    Google Scholar 

  76. R. P. Riegert: “Optimum usage of quartz crystal monitor based devices,” IVth International Vacuum Congress, Bristol: Institute of Physics and the Physical Society, pp. 527–530, (1968)

    Google Scholar 

  77. A. Zoeller, M. Boos, H. Hagedorn, W. Klug, and C. Schmitt: “High accurate insitu optical thickness monitoring for multilayer coatings,” 47 th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, (Dallas, TX, 2004), pp. 72–78

    Google Scholar 

  78. D. Ristau: “Characterisation and Monitoring,” in Optical Interference Coatings (N. Kaiser and H. K. Pulker, eds.), 181–205 (Springer, Berlin, Heidelberg, 2003)

    Google Scholar 

  79. B. T. Sullivan and J. A. Dobrowolski: “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992)

    ADS  Google Scholar 

  80. B. T. Sullivan and J. A. Dobrowolski: “Deposition error compensation for optical multilayer coatings. II. Experimental results — sputtering system,” Appl. Opt. 32, 2351–2360 (1993)

    ADS  Google Scholar 

  81. B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi: “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000)

    ADS  Google Scholar 

  82. D. E. Morton: “Optical monitoring of thin films using spectroscopic ellipsometry,” Vacuum Technology & Coating, August (2003)

    Google Scholar 

  83. H. A. Macleod: “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Optica Acta 19, 1–28 (1972)

    ADS  Google Scholar 

  84. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche: “Optical Filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972)

    ADS  Google Scholar 

  85. K. Postava and J. Pistora: “Thickness monitoring of optical filters for DWDM applications,” Optics Express 11, 610–616 (2003)

    ADS  Google Scholar 

  86. R. R. Willey: “Simulation of errors in monitoring of narrow bandpass filters,” Appl. Opt. 41, 3193–3195 (2002)

    ADS  Google Scholar 

  87. C. Kuo, S. Chen, C. Lee, D. Lu, and C. Wei: “Influence of monitor passband width to layer thickness determination during depositing a DWDM filter,” Optical Interference Coatings (OIC’04), OSA Tech. Digest (Opt. Soc. America, Washington, DC, 2004), ThD9

    Google Scholar 

  88. http://www.intellemetrics.com/dwdmspec.html

    Google Scholar 

  89. R. R. Willey: “Monitoring the last two (AR) layers in narrow bandpass filters,” Proc. SPIE 5250, 400–405 (2004)

    ADS  Google Scholar 

  90. M. Tilsch, V. Scheuer, and T. Tschudi: “Effects of thermal annealing on ion beam sputtered SiO2 and TiO2 optical thin films,” Proc. SPIE 3133, 163–175 (1997)

    ADS  Google Scholar 

  91. J. T. Brown: “Center wavelength shift dependence on substrate coefficient of thermal expansion for optical thin-film interference filters deposited by ion-beam sputtering,” Appl. Opt. 43, 4506–4511 (2004)

    ADS  Google Scholar 

  92. S. L. Prins, A. C. Barron, W. C. Herrmann, and J. R. McNeil: “Effect of stress on performance of dense wavelength division multiplexing filters: thermal properties,” Appl. Opt. 43, 633–637 (2004)

    ADS  Google Scholar 

  93. H. Takahashi: “Temperature stability of thin-film narrow-bandpass filters produced by ion assisted deposition,” Appl. Opt. 34, 667–675 (1995). Note that the author’s last name is misspelled as “Takashashi” in the article; the correct spelling is “Takahashi.”

    ADS  Google Scholar 

  94. S. Kim and C. K. Hwangbo: “Derivation of the center-wavelength shift of narrow-bandpass filters under temperature change,” Optics Express 12, 5634–5639 (2004)

    ADS  Google Scholar 

  95. J. Jiang, J. J. Pan, J. Guo, and G. Keiser: “Model for analyzing manufacturing-induced internal stresses in 50-GHz DWDM multilayer thin-film filters and evaluation of their effects on optical performances,” J. Lightwave Technol. 23, 495–503 (2005)

    ADS  Google Scholar 

  96. H. S. Lee, M. C. Lo, and B. Chiang: “Highly temperature stable filter for fiberoptic applications and system for altering the wavelength or other characteristics of optical devices,” U.S. Patent 6,269,202 (July 31, 2001)

    Google Scholar 

  97. W. Fan, Z. Yan, and C. H. Hsia: “Temperature compensated optical filter,” U.S. Patent 6,469,847 (October 22, 2002)

    Google Scholar 

  98. M. Tilsch: “Sandwiched thin film optical filter,” U.S. Patent 6,721,100 (April 13, 2004)

    Google Scholar 

  99. R. J. Ryall, C. A. Hulse, A. T. Taylor, and R. I. Seddon: “Extrinsically athermalized optical filter devices,” U.S. Patent 6,707,609 (March 16, 2004)

    Google Scholar 

  100. C. C. Fang, F. Jones, and V. Prasad: “Effect of gas impurity and ion-bombardment on stresses in sputter-deposited thin films: A molecular-dynamics approach,” J. Appl. Phys. 74,4472–4482 (1993)

    ADS  Google Scholar 

  101. M. Ohring: Materials Science of Thin Films (Academic Press, San Diego, CA, 2002)

    Google Scholar 

  102. G. J. Ockenfuss, N. A. O’Brien, and E. Williams: “Ultra-low stress coating process: an enabling technology for extreme performance thin film interference filters,” Optical Fiber Communications Conference, 2002 (OFC 2002), post-deadline paper FA8

    Google Scholar 

  103. G. J. Ockenfuss and R. E. Klinger: “Ultra-low stress thin film interference filters,” Optical Interference Coatings (OIC’04), OSA Tech. Digest (Opt. Soc. America, Washington DC, 2004), ThE2

    Google Scholar 

  104. S. L. Prins, A. C. Barron, W. C. Herrmann, and J. R. McNeil: “Effect of stress on performance of dense wavelength division multiplexing filters: optical properties,” Appl. Opt. 43, 626–632 (2004)

    ADS  Google Scholar 

  105. J. Straus and B. Kawasaki: “Passive optical components,” in Optical-Fiber Transmission (E. E. Basch, ed.), pp. 241–264 (Howard Sams & Co., Indianapolis, IN, 1987)

    Google Scholar 

  106. Y. C. Si and Y. Cheng: “Optical multiplexer/demultiplexer: discrete,” in WDM Technologies: Passive Optical Components, Volume I (A. K. Dutta, N. K. Dutta, and M. Fujiwara, eds.), pp. 39–78 (Academic Press, San Diego, CA, 2003)

    Google Scholar 

  107. E. Miyauchi, T. Iwama, H. Nakajima, N. Tokoyo, and K. Terai: “Compact wavelength multiplexer using optical-fiber pieces,” Opt. Lett. 5, 321–322 (1980)

    ADS  Google Scholar 

  108. G. Winzer, H. F. Mahlein, and A. Reichelt: “Single-mode and multimode all-fiber directional couplers for WDM,” Appl. Opt. 20, 3128–3135 (1981)

    ADS  Google Scholar 

  109. N. Uehara, R. Okuda, and T. Shidara: “Super antireflection coating at 1.5 μm,” Optical Interference Coatings (OIC’04), OSA Tech. Digest (Opt. Soc. America, Washington DC, 2004), WA5

    Google Scholar 

  110. S. Sugimoto, K. Minemura, K. Kobayashi, M. Shikada, H. Nomura, K. Kaede, A. Ueki, and S. Matsushita: “Wavelength division two-way fibre-optic transmission experiments using micro-optic duplexers,” Electron. Lett. 15, 15–17 (1978)

    ADS  Google Scholar 

  111. A. Nicia: “Lens coupling in fiber-optic devices: efficiency limits,” Appl. Opt. 20, 3136–3145 (1981)

    ADS  Google Scholar 

  112. W. Jiang, Y. Sun, R. T. Chen, B. Guo, J. Horwitz, and W. Morey: “Ball-lens based optical add-drop multiplexers: design and implementation,” IEEE Photon. Technol. Lett. 14, 825–827 (2002)

    ADS  Google Scholar 

  113. R. E. Wagner: “Optical multi/demultiplexer using interference filters,” U.S. Patent 4,474,424 (October 2, 1984)

    Google Scholar 

  114. K. Nosu, H. Ishio, and K. Hashimoto: “Multireflection optical multi/demultiplexer using interference filters,” Electron. Lett. 15, 414–415 (1979)

    Google Scholar 

  115. M. A. Scobey, W. J. Lekki, and T. W. Geyer: “Filters create thermally stable, passive multiplexers,” Laser Focus World 33, 111–116 (1997)

    Google Scholar 

  116. B. E. Lemoff, L. B. Aronson, and L. A. Buckman: “Zigzag waveguide demultiplexer for multimode WDM LAN,” Electron. Lett. 34, 1014–1016 (1998)

    Google Scholar 

  117. L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong: “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s Local Area Networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002)

    ADS  Google Scholar 

  118. B. E. Lemoff: “Coarse WDM transceivers,” Optics and Photonics News 13, S8–S14 (2002)

    Google Scholar 

  119. B. E. Lemoff, M. E. Ali, G. Panotopoulos, E. de Groot, G. M. Flower, G. H. Rankin, A. J. Schmit, K. D. Djordjev, M. R. T. Tan, A. Tandon, W. Gong, R. P. Tella, B. Law, L. Chia, and D. W. Dolfi: “Demonstration of a compact low-power 250-Gb/s parallel-WDM optical interconnect,” IEEE Photon. Technol. Lett. 17, 220–222 (2005)

    ADS  Google Scholar 

  120. T. Honda, A. C. Liu, J. Valera, J. Colvin, K. Sawyer, and R. R. McLeod: “Diffraction-compensated free-space WDM add-drop module with thin-film filters,” IEEE Photon. Technol. Lett. 15, 69–71 (2003)

    ADS  Google Scholar 

  121. Y. Okabe and H. Sasaki: “A simple wide wavelength division multi/demultiplexer consisting of optical elements,” Optical Fiber Communications Conference, 2002 (OFC 2002), pp. 322–323

    Google Scholar 

  122. Y. Okabe and H. Sasaki: “Compact multi/demultiplexer system consisting of stacked dielectric interference filters and aspheric lenses,” Proc. SPIE 4652, 197–203 (2002)

    ADS  Google Scholar 

  123. GR-1209-CORE: “Generic Requirements for Passive Optical Components,” Issue 3 (Telcordia Technologies, 2001).

    Google Scholar 

  124. GR-1221-CORE: “Generic reliability assurance requirements for passive optical components,” Issue 2 (Telcordia Technologies, 1999).

    Google Scholar 

  125. R. R. McLeod, M. Wolkin, V. Morozov, and K. A. Sawyer: “Packaging of microoptic components to meet Telcordia standards,” Optical Fiber Communications Conference, 2002 (OFC 2002), paper WS7

    Google Scholar 

  126. W. Moore and T. Kiktyeva: “Optical damage in fiber optic components,” Optical Fiber Communications Conference, 2003 (OFC 2003), pp. 525–527 vol. 2.

    Google Scholar 

  127. http://www.ftthcouncil.org

    Google Scholar 

  128. L. H. Domash, M. Wu, N. Nemchuk, and E. Ma: “Tunable and switchable multiple-cavity thin film filters,” J. Lightwave Technol. 22, 126–134 (2004)

    ADS  Google Scholar 

  129. R. S. Vodhanel, M. Krain, R. E. Wagner, and W. B. Sessa: “Long-term wavelength drift of the order of −0.01 nm/yr for 15 free-running DFB laser modules,” Optical Fiber Communications Conference, 1994 (OFC’94), paper WG5

    Google Scholar 

  130. Y. C. Chung and J. Jeong: “Aging-induced wavelength shifts in 1.5-um DFP lasers,” Optical Fiber Communications Conference, 1994 (OFC’94), paper WG6

    Google Scholar 

  131. B. Villeneuve, H. B. Kim, M. Cyr, and D. Gariepy: “A compact wavelength stabilization scheme for telecommunications transmitters,” 1997 Digest of the LEOS Summer Topical Meetings (IEEE, Piscataway, NJ, 1997), Paper WD2

    Google Scholar 

  132. B. Villeneuve and H. B. Kim: “Wavelength monitoring and control assembly for WDM optical transmission systems,” U.S. Patent 5,825,792 (October 20, 1998)

    Google Scholar 

  133. T. C. Munks, P. E. Dunn, and D. J. Allie: “Method and apparatus for monitoring and control of laser emission wavelength,” U.S. Patent 6,134,253 (October 17, 2000)

    Google Scholar 

  134. http://www.jdsu.com/site/images/products/pdf/Wavelength_Locker_Narrowband_012704.pdf

    Google Scholar 

  135. http://www.santec.com/pdf/components/OWL-1020.pdf

    Google Scholar 

  136. M. Lequime: “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250 302–311 (2004)

    ADS  Google Scholar 

  137. R. Zengerle: “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt. 34, 1589–1617 (1987)

    ADS  Google Scholar 

  138. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami: “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998)

    ADS  Google Scholar 

  139. P. Yeh, A. Yariv, and E. Marom: “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978)

    ADS  Google Scholar 

  140. C. K. Carniglia: “Perfect mirrors from a coating designer’s point of view,” Proc. SPIE 3902, 68–84 (1999)

    ADS  Google Scholar 

  141. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas: “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998)

    ADS  Google Scholar 

  142. S. Kim and C. K. Hwangbo: “Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands,” Appl. Opt. 41, 3187–3192 (2002)

    ADS  Google Scholar 

  143. M. Gerken: “Wavelength multiplexing by spatial beam shifting in multilayer thin-film structures,” Electrical Engineering Ph.D. Dissertation, Stanford University, CA, March 2003

    Google Scholar 

  144. M. Gerken and D. A. B. Miller: “Multilayer thin-film stacks with steplike spatial beam shifting,” J. Lightwave Technol. 22, 612–618 (2004)

    ADS  Google Scholar 

  145. M. Gerken and D. A. B. Miller: “Photonic nanostructures for wavelength division multiplexing,” Proc. SPIE 5597, 82–96 (2004)

    ADS  Google Scholar 

  146. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas: “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041 (1999)

    ADS  Google Scholar 

  147. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos: “An alldielectric coaxial waveguide,” Science 289, 415–418 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tilsch, M.K., Sargent, R.B., Hulse, C.A. (2006). Dielectric Multilayer Filters. In: Venghaus, H. (eds) Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences, vol 123. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31770-8_8

Download citation

Publish with us

Policies and ethics