Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 123))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Othonos and K. Kalli: Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, London, 1999)

    Google Scholar 

  2. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran: “UV-written in-fiber Bragg gratings,” Opt. and Quantum Electron. 28, 93–135 (1996)

    Article  Google Scholar 

  3. A. Othonos: “Fiber Bragg gratings,” Review of Scientific Instruments 68, 4309–4341 (1997)

    Article  ADS  Google Scholar 

  4. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen: “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000)

    Article  ADS  Google Scholar 

  5. R. I. Laming, W. H. Loh, X. Gu, M. N. Zervas, M. J. Cole, and A. D. Ellis: “Dispersion compensation with chirped fiber Bragg grating to 400 km at 10 Gbit/s in nondispersion-shifted fiber,” Opt. Fiber Commun. Conf. (OFC’96), Techn. Digest, (San Jose, CA, USA, 1996), Vol. 2, 203–204 (1996)

    Google Scholar 

  6. J. F. Brennan III, M. R. Matthews, W. V. Dower, D. J. Treadwell, W. Wang, J. Porque, and X. Fan: “Dispersion correction with a robust fiber grating over the full C-band at 10-Gb/s rates with < 0.3-dB power penalties,” IEEE Photon. Technol. Lett. 15, 1722–1724 (2003)

    Article  ADS  Google Scholar 

  7. X. Chen, X. Xu, M. Zhou, D. Jiang, X. Li, J. Feng, and S. Xie: “Tunable dispersion compensation in a 10 Gb/s optical transmission system by employing a novel tunable dispersion compensator,” IEEE Photon. Technol. Lett. 16, 188–190 (2004)

    Article  ADS  Google Scholar 

  8. K.-M. Feng, J.-X. Cai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg: “Dynamic dispersion compensation in a 10 Gbit/s optical system using a voltage controlled tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 373–375 (1999)

    Article  ADS  Google Scholar 

  9. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette: “Implementation and characterization of fiber Bragg gratings linearly chirped by temperature gradient,” Opt. Lett. 19, 2027–2029 (1994)

    ADS  Google Scholar 

  10. P. C. Hill and B. J. Eggleton: “Strain gradient chirp of fiber Bragg grating,” Electron. Lett. 30, 1172–1174 (1994)

    Article  Google Scholar 

  11. M. Pacheco, A. Medez, L. A. Zenteni, and F. Mendoz-Santoyo: “Chirping optical fiber Bragg gratings using tapered-thickness piezo-electric ceramic,” Electron. Lett. 34, 2348–2350 (1998)

    Article  Google Scholar 

  12. M. M. Ohn, A. T. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill: “Dispersion variable fiber grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001 (1996)

    Article  Google Scholar 

  13. P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook: “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photon. Technol. Lett. 17, 831–833 (2005)

    Article  ADS  Google Scholar 

  14. D. K. W. Lam and B. K. Garside: “Characterization of single-mode optical fiber filters,” Appl. Opt. 20, 440–445 (1981)

    ADS  Google Scholar 

  15. P.St. J. Russell, J. L. Archambault, and L. Reekie: “Fiber gratings,” Physics World, October 1993 issue, 41–46 (1993)

    Google Scholar 

  16. G. Meltz and W. W. Morey: “Bragg grating formation and germanosilicate fiber photosensitivity,” International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, Quebec City, Quebec, May 10–11, Proc. SPIE 1516, 185–199 (1991)

    ADS  Google Scholar 

  17. K. O. Hill and G. Meltz: “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997)

    Article  ADS  Google Scholar 

  18. G. P. Brady, K. Kalli, D. J. Webb, L. Reekie, J. L. Archambault, and D. A. Jackson: “Simultaneous measurement of strain and temperature using the first-and second-order diffraction wavelengths of Bragg gratings,” IEE Proceed. Optoelectron. 144, 156–161 (1997)

    Article  Google Scholar 

  19. E. Delevaque, S. Boj, J. F. Bayon, H. Poignant, J. Lemellot, and M. Monerie: “Optical fibre design for strong gratings photoimprinting with radiation mode suppression,” Opt. Fiber Commun. Conf. (OFC’95), Techn. Digest (San Diego, CA, USA), postdeadline paper PD5 (1995)

    Google Scholar 

  20. H. Patrick and S. L. Gilbert: “Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993)

    ADS  Google Scholar 

  21. Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion: “Abnormal spectral evolution of fibre Bragg gratings in hydrogenated fibres,” Opt. Lett. 27, 586–588 (2002)

    ADS  Google Scholar 

  22. A. G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion: “Formation of type IA fibre Bragg gratings in germanosilicate optical fibre,” Electron. Lett. 40, 163–164 (2004)

    Article  Google Scholar 

  23. A. G. Simpson, K. Kalli, L. Zhang, K. Zhou, and I. Bennion: “Abnormal photosensitivity effects and the formation of type IA FBGs,” Conf. Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Techn. Digest (Monterey, CA, USA) paper MD31 (2003)

    Google Scholar 

  24. K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, and I. Bennion: “Tailoring the temperature and strain coefficients of type I and type IA dual grating sensors — the impact of hydrogenation conditions,” Measurement Science and Technology 17, 949–954 (2006)

    Article  ADS  Google Scholar 

  25. A. G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion: “An idealised method for the fabrication of temperature invariant IA-I strain sensors,” postdeadline session, OFS-16 Nara, Japan, PD4 (2003)

    Google Scholar 

  26. K. Kalli, H. Dobb, A. G. Simpson, M. Komodromos, D. J. Webb, and I. Bennion: “Annealing and temperature coefficient study of type IA fibre Bragg gratings inscribed under strain and no strain-implications to optical fibre component reliability,” Proc. SPIE 6193, Reliability of Optical Fiber Components, Devices, Systems, and Networks III, 119–130 (2006)

    Google Scholar 

  27. I. Riant and F. Haller: “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIA aging,” J. Lightwave Technol. 15, 1464–1469 (1997)

    Article  ADS  Google Scholar 

  28. J. L. Archambault, L. Reekie, and P.St. J. Russell: “High reflectivity and narrow bandwidth fibre gratings written by single excimer pulse,” Electron. Lett. 29, 28–29 (1993)

    Google Scholar 

  29. A. Yariv: “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973)

    Article  ADS  Google Scholar 

  30. M. Yamada and K. Sakuda: “Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987)

    Article  ADS  Google Scholar 

  31. K. O. Hill, S. Theriault, B. Malo, F. Bilodeau, T. Kitagawa, D. C. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto: “Chirped in-fiber Bragg grating dispersion compensators: Linearization of the dispersion characteristic and demonstration of dispersion compensation in a 100 km, 10 Gbit/s optical fiber link,” Electron. Lett. 30, 1755–1756 (1994)

    Article  Google Scholar 

  32. V. Mizrahi and J. E. Sipe: “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol. 11, 1513–1517 (1993)

    Article  ADS  Google Scholar 

  33. J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson: “Apodisation of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995)

    Article  Google Scholar 

  34. B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill: “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995)

    Article  Google Scholar 

  35. R. Kashyap, A. Swanton, and D. J. Armes: “Simple technique for apodising chirped and unchirped fiber Bragg gratings,” Electron. Lett. 32, 1226–1228 (1996)

    Article  Google Scholar 

  36. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, C. Johnson, J. Albert, and K. Takiguchi: “Aperiodic in-fiber Bragg gratings for optical fiber dispersion compensation,” Opt. Fiber Commun. Conf.(OFC’94), Techn. Digest (San José, CA, USA), post deadline paper PF-77 (1994)

    Google Scholar 

  37. K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson: “Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters,” Electron. Lett. 27, 1548–1550 (1991)

    Google Scholar 

  38. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki: “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978)

    Article  ADS  Google Scholar 

  39. B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii: “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3, 66–68 (1978)

    ADS  Google Scholar 

  40. G. Meltz, W. W. Morey, and W. H. Glenn: “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989)

    ADS  Google Scholar 

  41. M. L. Dockney, J. W. James, and R. P. Tatam: “Fiber Bragg grating fabricated using a wavelength tuneable source and a phase-mask based interferometer,” Meas. Sci. Technol. 7, 445 (1996)

    Article  ADS  Google Scholar 

  42. R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, and D. L. Williams: “All-fiber narrow band reflection grating at 1500 nm,” Electron. Lett. 26, 730–732 (1990)

    ADS  Google Scholar 

  43. B. J. Eggleton, P. A. Krug, and L. Poladian: “Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings,” Opt. Lett. 19, 877–880 (1994)

    ADS  Google Scholar 

  44. H. G. Limberger, P. Y. Fonjallaz, P. Lambelet, Ch. Zimmer, R. P. Salathe, and H. H. Gilgen: “Photosensitivity and self-organization in optical fibers and waveguides,” Proc. SPIE 2044, Photosensitivity and Self-Organization in Optical Fibers and Waveguides, 272–285 (1993)

    ADS  Google Scholar 

  45. A. Othonos and X. Lee: “Narrow linewidth excimer laser for inscribing Bragg gratings in optical fibers,” Rev. Sci. Instr. 66, 3112–3115 (1995)

    Article  ADS  Google Scholar 

  46. J. Cannon and S. Lee: “Fiberoptic Product News,” Laser Focus World 2, 50–51 (1994)

    Google Scholar 

  47. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert: “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase-mask,” Appl. Phys. Lett. 62, 1035–1037 (1993)

    Article  ADS  Google Scholar 

  48. A. Othonos and X. Lee: “Novel and improved methods of writing Bragg gratings with phase-masks,” IEEE Photon. Technol. Lett. 7, 1183–1185 (1995)

    Article  ADS  Google Scholar 

  49. P. E. Dyer, R. J. Farley, and R. Giedl: “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Optics Commun. 129, 98–108 (1996)

    Article  ADS  Google Scholar 

  50. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert: “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668–1669 (1993)

    Google Scholar 

  51. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner: “Efficient mode-conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990)

    Google Scholar 

  52. www.stratosphere.com

    Google Scholar 

  53. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, and J. Unruh: “Fiber Bragg gratings (FBG) made with a phase mask and 800 nm femtosecond radiation,” Opt. Fiber Commun. Conf. (OFC’03), Techn. Digest (Atlanta, GA, USA, 2003), Vol. 3, postdeadline paper PD30 (2003)

    Google Scholar 

  54. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh: “Bragg gratings written in all-SiO/sub 2/ and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004)

    Article  ADS  Google Scholar 

  55. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu: “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1866 (2004)

    Article  ADS  Google Scholar 

  56. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion: “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004)

    Article  Google Scholar 

  57. A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion: “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett. 41, 472–474 (2005)

    Article  Google Scholar 

  58. G. D. Marshall and M. J. Withford: “Rapid production of arbitrary fiber Bragg gratings using femtosecond laser radiation,” 18 th Ann. Meeting IEEE Lasers & Electro-Optics Soc. (LEOS 2005), Techn. Digest (Sydney, Australia, 2005) 935–936 (2005)

    Google Scholar 

  59. D. P. Hand and P.St. J. Russell: “Single-mode fibre grating written into sagnac loop using photosensitive fibre: transmission filters,” 7 th Internat. Conf. Integr. Optics and Opt. Fiber Commun. (IOOC’89), Techn. Digest (Kobe, Japan), 64 (1989)

    Google Scholar 

  60. K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher: “Narrow-bandwidth optical waveguide transmission filters: A new design concept and applications to optical fiber communications,” Electron. Lett. 23, 464–465 (1987)

    Google Scholar 

  61. F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert: “High-return-loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photon. Technol. Lett. 6, 80–82 (1994)

    Article  ADS  Google Scholar 

  62. D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher: “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23, 668–669 (1987)

    Google Scholar 

  63. A. Fielding, T. J. Cullen, and H. N. Rourke: “Compact all-fiber wavelength drop and insert filter,” Electron. Lett. 30, 2160–2161 (1994)

    Article  Google Scholar 

  64. D. C. Reid, C. M. Ragdale, I. Bennion, D. J. Robbins, J. Buus, and W. J. Stewart: “Phase-shifted Moiré grating fiber resonators,” Electron. Lett. 26, 10–11 (1990)

    Google Scholar 

  65. S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges: “Formation of Moiré grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1946 (1991)

    Google Scholar 

  66. L. Zhang, K. Sugden, I. Bennion, and A. Molony: “Wide-stopband chirped fiber moiré grating transmission filters,” Electron. Lett. 31, 477–479 (1995)

    Article  Google Scholar 

  67. L. Brilland, D. Pureur, J. F. Bayon, and E. Delevaque: “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett. 35, 234–235 (1999)

    Article  Google Scholar 

  68. K. Takahashi, M. Tamura, T. Sano, K. Saito, and H. Suganuma: “Reconfigurable optical add/drop multiplexer using passive temperature-compensated wavelength tunable fiber Bragg grating,” Opt. Fiber Commun. Conf.(OFC’01), Techn. Digest (Anaheim, CA, USA) Vol. 3, paper WDD93 (2001)

    Google Scholar 

  69. P. Yvernault, D. Méchin, E. Goyat, L. Brilland, and D. Pureur: “Fully functional optical add and drop multiplexer using twin-core fiber based Mach-Zehnder interferometer with photoimprinted fiber Bragg gratings,” Opt. Fiber Commun. Conf. (OFC’01), Techn. Digest (Anaheim, CA, USA) Vol. 3, paper WDD92 (2001)

    Google Scholar 

  70. Y.-L. Lo and C.-P. Kuo: “Packaging a fiber Bragg grating without preloading in a simple athermal bimateerial device,” IEEE Trans. Adv. Packaging 25, 50–53 (2002)

    Article  Google Scholar 

  71. www.gouldfo.com

    Google Scholar 

  72. P. Yvernault, D. Durand, D. Méchin, M. Boitel, and D. Pureur: “Passive athermal Mach-Zehnder interferometer twin-core fiber optical add/drop multiplexer,” Proc. 27 th Europ. Conf. Opt. Commun. (ECOC’01), Amsterdam, The Netherlands, Vol. 6, 88–89 (2001)

    Google Scholar 

  73. W. W. Morey: “Tuneable narrow-line bandpass filter using fiber gratings,” Opt. Fiber Commun. Conf. (OFC’91), Techn. Digest (San Diego, CA, USA), PDP 20, 96 (1991)

    Google Scholar 

  74. G. P. Agrawal: Nonlinear Fiber Optics, 3 rd ed. (Academic, New York, USA, 2001)

    Google Scholar 

  75. www.corning.com

    Google Scholar 

  76. J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran: “Fiber dispersion compensation using a chirped in fiber Bragg grating,” Electron. Lett. 30, 985–987 (1994)

    Article  Google Scholar 

  77. B. J. Eggleton, P. A. Krug, and L. Poladian: “Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings,” Opt. Lett. 19, 877–880 (1994)

    ADS  Google Scholar 

  78. W. Loh, M. Cole, M. Zervas, S. Barcelos, and R. Laming: “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051-(1995)

    ADS  Google Scholar 

  79. L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, and J. F. Bayon: “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Optical Fiber Technology 3, 267–271 (1997)

    Article  ADS  Google Scholar 

  80. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming: “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998)

    Article  ADS  Google Scholar 

  81. A. V. Buryak, K. Y. Kolossovski, and D.Yu. Stepanov: “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 91–98 (2003)

    Article  ADS  Google Scholar 

  82. M. Guy, F. Trépanier, and Y. Painchaud: “Manufacturing of high-channel count dispersion compensators using complex phase mask technology,” OSA Topical Meeting on Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Monterey Bay, CA, USA, 269–271 (2003)

    Google Scholar 

  83. A. Othonos, X. Lee, and R. M. Measures: “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1974 (1994)

    Article  Google Scholar 

  84. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette: “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19, 2027–2029 (1994)

    ADS  Google Scholar 

  85. T. Komukai, T. Inui, and M. Nakazawa: “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449–451 (2001)

    Article  Google Scholar 

  86. A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur: “Wide tuning range and low insertion loss variation dispersion compensator,” Electron. Lett. 40, 1506–1508 (2004)

    Article  Google Scholar 

  87. A. Mugnier, E. Goyat, D. Pureur, and P. Yvernault: “Tunable dispersion compensating fibre Bragg grating using pure bending of a simply supported beam,” Proc. 28 th Europ. Conf. Opt. Commun. (ECOC’02), Copenhagen, Denmark, paper 10.3.5 (2002)

    Google Scholar 

  88. www.teraxion.com

    Google Scholar 

  89. C. Scheerer, C. Glingener, G. Fischer, M. Bohn, and W. Rosenkranz: “Influence of filter group delay ripples on system performance,” Proc. 25th Europ. Conf. Opt. Commun. (ECOC’99), Nice, France, Vol. I, 410–411 (1999)

    Google Scholar 

  90. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. Laming: “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476–1478 (1998)

    Article  ADS  Google Scholar 

  91. M. Derrien, D. Gauden, E. Goyat, A. Mugnier, P. Yvernault, and D. Pureur: “Wavelength-frequency analysis of dispersion compensator group delay ripples,” Opt. Fiber Commun. Conf. (OFC’03), Techn. Digest (Atlanta, GA, USA), Vol. 1, 34–35 (2003)

    Google Scholar 

  92. D. Gauden, A. Mugnier, M. Gay, L. Lablonde, F. Lahoreau, and D. Pureur: “Experimental measurement of 10 Gbit/s system power penalty spectrum created by group delay ripple of fiber Bragg grating chromatic dispersion compensator,” Proc. 29th Europ. Conf. Opt. Commun. (ECOC’03), Rimini, Italy, 684–685 (2003)

    Google Scholar 

  93. M. Eiselt, C. Clausen, and R. Tkach: “Performance characterization of components with group delay fluctuations,” IEEE Photon. Technol. Lett. 15, 1076–1078 (2003)

    Article  ADS  Google Scholar 

  94. S. James, X. Fan, and J. Brennan III: “Performance effect in optical communication systems caused by phase ripples of dispersive components,” Appl. Opt. 43, 5033–5036 (2004)

    Article  ADS  Google Scholar 

  95. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe: “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996)

    Article  ADS  Google Scholar 

  96. M. Guy and F. Trépanier: “Chirped fiber Bragg gratings equalize gain,” WDM Solutions, Vol. 3(3) 77–82 (2001)

    Google Scholar 

  97. H. Chotard, Y. Painchaud, A. Mailloux, M. Morin, F. Trépanier, and M. Guy: “Group delay ripple of cascaded Bragg grating gain flattening filters,” IEEE Photon. Technol. Lett. 14, 1130–1132 (2002)

    Article  ADS  Google Scholar 

  98. M. Guy, F. Trépanier, A. Doyle, Y. Painchaud, and R. L. Lachance: “Novel applications of fiber Bragg grating components for next-generation WDM systems,” Annales des Télécommunications 58, 1275–1306 (2003)

    Google Scholar 

  99. H. Renner: “Effective-index increase, form birefringence and transition losses in UV-side-illuminated photosensitive fibers,” Opt. Express 9, 546–560 (2001)

    Article  ADS  Google Scholar 

  100. K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion: “Spectral modification of type IA fibre Bragg gratings by high power near infra-red lasers,” Measurement Science and Technology 17, 968–974 (2006)

    Article  ADS  Google Scholar 

  101. A. D. Kersey, M. A. Davis, J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele: “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997)

    Article  ADS  Google Scholar 

  102. D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron: “Narrow line semiconductor laser using fiber grating,” Electron. Lett. 27, 1115–1116 (1991)

    Google Scholar 

  103. P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P.F Sciortino, Jr.: “Mode-locked Hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993)

    Article  ADS  Google Scholar 

  104. L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne: “Tuneable single-mode fiber laser,” J. Lightwave Technol. LT-4, 956–957 (1986)

    Article  ADS  Google Scholar 

  105. G. A. Ball, W. W. Morey, and J. P. Waters: “Nd3+ fiber laser utilizing intra-core Bragg reflectors,” Electron. Lett. 26, 1829–1830 (1990)

    Google Scholar 

  106. G. A. Ball and W. H. Glenn: “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflector,” J. Lightwave Technol. 10, 1338–1343 (1992)

    Article  ADS  Google Scholar 

  107. G. A. Ball, W. H. Glenn, W. W. Morey, and P. K. Cheo: “Modeling of short, single-frequency fiber laser in high-gain fiber,” IEEE Photon. Technol. Lett. 5, 649–651 (1993)

    Article  ADS  Google Scholar 

  108. G. A. Ball, W. W. Morey, and P. K. Cheo: “Single-and multi-point fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993)

    Article  ADS  Google Scholar 

  109. V. Mizrahi, D. J. D. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J. M. P. Delavaux: “Stable single-mode erbium fiber-grating laser for digital communications,” J. Lightwave Technol. 11, 2021–2025 (1993)

    Article  ADS  Google Scholar 

  110. A. Othonos, X. Lee, and D. P. Tsai: “Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser,” Opt. Eng. 35, 1088–1092 (1996)

    Article  ADS  Google Scholar 

  111. G. A. Ball, W. W. Morey, and W. H. Glenn: “Standing-wave monomode erbium fiber laser,” IEEE Photon. Technol. Lett. 3, 613–615 (1991)

    Article  ADS  Google Scholar 

  112. J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff: “Short single frequency erbium-doped fiber laser,” Electron. Lett. 28, 1385–1386 (1992)

    Google Scholar 

  113. J. L. Zyskind, J. W. Sulhoff, P. D. Magill, K. C. Reichmann, V. Mizrahi, and D. J. DiGiovanni: “Transmission at 2.5 Gbits/s over 654 km using an erbiumdoped fiber grating laser source,” Electron. Lett. 29, 1105–1106 (1993)

    Google Scholar 

  114. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne: “Highly efficient, low-noise grating-feedback Er3+:Yb3+ codoped fibre laser,” Electron. Lett. 30, 972–973 (1994)

    Article  Google Scholar 

  115. G. S. Grubb: “High-power 1.48 μm cascaded Raman laser in germanosilicate fibers,” Opt. Fiber Commun. Conf. (OFC’95), Technical Digest Series, Postconference ed. Vol. 8, 41–42 (1995)

    MathSciNet  Google Scholar 

  116. S. M. Melle, K. Liu, and R. M. Measures: “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992)

    Article  ADS  Google Scholar 

  117. A. D. Kersey, T. A. Berkoff, and W. W. Morey: “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993)

    Article  ADS  Google Scholar 

  118. H. Geiger, M. G. Xu, N. C. Eaton, and J. P. Dakin: “Electronic tracking system for multiplexed fiber grating sensors,” Electron. Lett. 31, 1006–1007 (1995)

    Article  Google Scholar 

  119. D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, and J. L. Archambault: “Simple multiplexing scheme for fiber-optic grating sensor network,” Opt. Lett. 18, 1192–1194 (1993)

    ADS  Google Scholar 

  120. A. D. Kersey, T. A. Berkoff, and W. W. Morey: “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992)

    ADS  Google Scholar 

  121. A. Othonos, A. T. Alavie, S. Melle, S. E. Karr, and R. M. Measures: “Fiber Bragg grating laser sensor,” Opt. Eng. 32, 2841–2846 (1993)

    Article  ADS  Google Scholar 

  122. W. W. Morey, G. Meltz, and J. M. Weiss: “Evaluation of a fiber Bragg grating hydrostatic pressure sensor,” Proceed. Opt. Fiber Sensors Conf. (OFS-8), Monterey, CA, USA, 1992, postdeadline paper PD-4.4 (1992)

    Google Scholar 

  123. M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin: “Thermally-compensated bending gauge using surface mounted fiber gratings,” Int. J. Optoelectron. 9, 281–283 (1994)

    Article  Google Scholar 

  124. M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin: “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994)

    Article  Google Scholar 

  125. W. Lee, J. Lee, C. Henderson, H. F. Taylor, R. James, C. E. Lee, V. Swenson, W. N. Gibler, R. A. Atkins, and W. G. Gemeiner: “Railroad bridge instrumentation with fiber optic sensors,” Proceed. Opt. Fiber Sensors Conf. (OFS-12), Williamsburg, VA, USA, 1997, 412–415 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Othonos, A., Kalli, K., Pureur, D., Mugnier, A. (2006). Fibre Bragg Gratings. In: Venghaus, H. (eds) Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences, vol 123. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31770-8_6

Download citation

Publish with us

Policies and ethics