Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 123))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. K. Smit: “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988)

    Google Scholar 

  2. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi: “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990)

    Google Scholar 

  3. C. Dragone: “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991)

    ADS  Google Scholar 

  4. M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit: “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett 32, 1132–1133 (1996)

    Google Scholar 

  5. J. T. Ahn, S. Park, J. Y. Do, J.-M. Lee, M.-H. Lee, and K. H. Kim: “Polymer wavelength channel selector composed of electrooptic polymer switch array and two polymer arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 16, 1567–1569 (2004)

    ADS  Google Scholar 

  6. H. Okayama and M. Kawahara: “Waveguide array grating demultiplexer on LiNbO3,” Integrated Photonics Research (IPR’95), Techn. Digest (Dana Point, CA, USA, 1995), 296–298 (1995)

    Google Scholar 

  7. C. van Dam: “InP-based polarization independent wavelength demultiplexers,” PhD thesis, Delft University of Technology, Delft, The Netherlands (1997) ISBN 90-9010798-3

    Google Scholar 

  8. M. K. Smit and C. van Dam: “PHASAR-based WDM-devices: principles, design and applications,” J. Select. Topics Quantum Electron. 2, 236–250 (1996)

    Google Scholar 

  9. A. Klekamp and R. Münzner: “Calculation of imaging errors of AWG,” J. Lightwave Technol. 21, 1978–1986 (2003)

    ADS  Google Scholar 

  10. M. R. Amersfoort, C. R. de Boer, F. P. G. M. van Ham, M. K. Smit, P. Demeester, J. J. G. M. van der Tol, and A. Kuntze: “Phased-array wavelength demultiplexer with flattened wavelength response,” Electron. Lett. 30, 300–302 (1994)

    Google Scholar 

  11. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau: “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996)

    Google Scholar 

  12. C. Dragone. US Patent No. 5,412,744 (1995)

    Google Scholar 

  13. K. Okamoto and H. Yamada: “Flat spectral response arrayed waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996)

    Google Scholar 

  14. K. Okamoto and H. Yamada: “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20, 43–45 (1995)

    ADS  Google Scholar 

  15. C. Dragone: “Efficient techniques for widening the passband of a wavelength router,” J. Lightwave Technol. 16, 1895–1906 (1998)

    ADS  Google Scholar 

  16. A. Rigny, A. Bruno, and H. Sik: “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997)

    Google Scholar 

  17. J.-J. He, E. S. Koteles, and B. Humphreys: “Passband flattening via waveguide grating devices using phase-dithering,” Integrated Photonics Research (IPR’02), Techn. Digest, (Vancouver, Canada, 2002), paper IFE2 (2002)

    Google Scholar 

  18. G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha: “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” Opt. Fiber Commun. Conf. (OFC’98), Techn. Digest, (San Jose, CA, USA, 1998), paper TuN1 (1998)

    Google Scholar 

  19. C. R. Doerr, L. W. Stulz, and R. Pafchek: “Compact and low-loss integrated boxlike passband multiplexer,” IEEE Photon. Technol. Lett. 15, 918–920 (2003)

    ADS  Google Scholar 

  20. H. Takahashi, K. Oda, H. Toba, and Y. Inoue: “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995)

    ADS  Google Scholar 

  21. C. G. P. Herben, X. J. M. Leijtens, D. H. P. Maat, H. Blok, and M. K. Smit: “Crosstalk performance of integrated optical cross-connects,” J. Lightwave Technol. 17, 1126–1134 (1999)

    ADS  Google Scholar 

  22. H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi: “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993)

    ADS  Google Scholar 

  23. K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka: “Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region,” Electron. Lett. 40, 374–375 (2004)

    Google Scholar 

  24. M. Kawachi: “Silica waveguides on silicon and their application to integratedoptic components,” Opt. and Quantum Electron. 22, 391–416 (1990)

    Google Scholar 

  25. K. Imoto: “Progress in high silica waveguide devices,” Integrated Photonics Research (IPR’94), Techn. Digest (1994), 62–64 (1994)

    Google Scholar 

  26. Y. Saito: “Optical fibre technology-key to undersea cable development,” J. Asia Electron. Union 5, 63–67 (1989)

    Google Scholar 

  27. C. D. Lee, W. Chen, Y.-J. Chen, W. T. Beard, D. Stone, R. F. Smith, R. Mincher, and I. R. Stewart: “The role of photomask resolution on the performance of arrayed-waveguide grating devices,” J. Lightwave Technol. 19, 1726–1733 (2001)

    ADS  Google Scholar 

  28. C. H. Henry, G. E. Blonder, and R. F. Kazarinov: “Glass waveguides on silicon for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539 (1989)

    ADS  Google Scholar 

  29. Q. Lai, J. S. Gu, M. K. Smit, J. Schmid, and H. Melchior: “Simple technologies for fabrication of low-loss silica waveguides,” Electron. Lett. 28, 1000–1001 (1992)

    Google Scholar 

  30. S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Dennis, P. Philippe, and E. Desgranges: “Si-based integrated optics technologies,” Solid State Technol. 32, 69–74 (1989)

    Google Scholar 

  31. Y. P. Li and C. H. Henry: “Silica-based optical integrated circuits,” IEE Proc. Optoelectron. 143, 263–280 (1996)

    Google Scholar 

  32. A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann: “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding,” J. Lightwave Technol. 18, 193–198 (2000)

    ADS  Google Scholar 

  33. Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi: “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947–1957 (1997)

    ADS  Google Scholar 

  34. S. Suzuki, S. Sumida, Y. Inoue, M. Ishii, and Y. Ohmori: “Polarization-insensitive arrayed-waveguide gratings using dopant-rich silica-based glass with thermal expansion asjusted to Si substrate,” Electron. Lett. 33, 1173–1174 (1997)

    Google Scholar 

  35. S. M. Ojha, C. G. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, and J. Taylor: “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998)

    Google Scholar 

  36. H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt: “Polarization-independent silica-on-silicon Mach-Zehnder interferometers,” J. Lightwave Technol. 12, 64–67 (1994)

    ADS  Google Scholar 

  37. C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior: “Polarization insensitive, low-loss, low crosstalk wavelength multiplexer modules,” IEEE J. Select. Topics Quantum Electron. 5, 1407–1412 (1999)

    Google Scholar 

  38. Y. Inoue, M. Itoh, Y. Hibino, A. Sugita, and A. Himeno: “Novel birefringence compensating AWG design,” Conf. Opt. Fiber Commun. (OFC’01), Techn. Digest (Anaheim, CA, USA, 2001), paper WB4 (2001)

    Google Scholar 

  39. R. Kasahara, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino: “Novel polarization-insensitive AWG with undercladding ridge structure,” Integr. Photon. Res. (IPR’02) Technical Digest (Vancouver, Canada, 2002), paper Ife5 (2002)

    Google Scholar 

  40. Y. Hida, Y. Hibino, H. Okazaki, and Y. Ohmori: “10 m-long silica-based waveguide with a loss of 1.7 dB/m,” Integrated Photonics Research (IPR’95), Techn. Digest, (Dana Point, CA, USA, 1995), 49–51 (1995)

    Google Scholar 

  41. Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori: “Propagation loss characteristics of long silica-based optical waveguides on 5-inch Si wafers,” Electron. Lett. 29, 1847–1848 (1993)

    Google Scholar 

  42. S. Suzuki, K. Shuto, H. Takahashi, and Y. Hibino: “Large scale and high-density planar lightwave circuits with high-Δ GeO2-doped silica waveguides,” Electron. Lett. 28, 1863–1864 (1992)

    Google Scholar 

  43. Y. Hibino: “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Select. Topics Quantum Electron. 8, 1090–1101 (2002)

    Google Scholar 

  44. B. Little: “A VLSI photonics platform,” Opt. Fiber Commun. Conf. (OFC’03). Techn. Digest (Atlanta, GA, USA, 2003), 444–445 (2003)

    Google Scholar 

  45. K. Okamoto, K. Moriwaki, and S. Suzuki: “Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett. 31, 184–186 (1995)

    Google Scholar 

  46. K. Okamoto, K. Shuto, H. Takahashi, and Y. Ohmori: “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25 GHz spacing,” Electron. Lett. 32, 1474–1475 (1996)

    Google Scholar 

  47. H. Takahashi, I. Nishi, and Y. Hibino: “10 GHz spacing optical frequency division multiplexer based on arrayed-waveguide grating,” Electron. Lett. 28, 380–382 (1992)

    Google Scholar 

  48. K. Okamoto: Fundamentals of Optical Waveguides (Academic Press, San Diego, CA, 2000)

    Google Scholar 

  49. H. Uetsuka, L. L. Marra, K. Akiba, K. Morosawa, H. Okano, S. Takasugi, and K. Inaba: “Recent improvements in arrayed waveguide grating dense wavelength division multi/demultiplexers,” Proc. 8 th Europ. Conf. Integr. Optics (ECIO’97), Stockholm, Sweden, 76–79 (1997)

    Google Scholar 

  50. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori: “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” J. Lightwave Technol. 12, 1180–1182 (2000)

    Google Scholar 

  51. Y. P. Li. US Patent No. 5,745,618 (1998)

    Google Scholar 

  52. K. Takada, H. Yamada, and Y. Inoue: “Optical low coherence method for characterizing silica-based arrayed-waveguide grating multiplexers,” J. Lightwave Technol. 14, 1677–1689 (1996)

    ADS  Google Scholar 

  53. E. Pawlowski, B. Kuhlow, G. Przyrembel, and C. Warmuth: “Arrayed-waveguide grating demultiplexer with variable center frequency and transmission characteristic,” Proc. 9 th Eur. Conf. on Integr. Opt. (ECIO’99) Torino, Italy, 207–210 (1999)

    Google Scholar 

  54. S. Kamei, M. Ishii, T. Kitagawa, M. Itoh, and Y. Hibino: “64-channel ultra-low crosstalk arrayed-waveguide grating multi/demultiplexer module using cascade connection technique,” Electron. Lett. 39, 81–82 (2003)

    Google Scholar 

  55. Y. Hibino, Y. Hida, A. Kaneko, M. Ishii, M. Itoh, T. Goh, A. Sugita, T. Saida, A. Himeno, and Y. Ohmori: “Fabrication of silica-on-Si waveguide with higher index difference and its application to 256 channel arayed-waveguide multi/demultiplexer,” Opt. Fiber Commun. Conf. (OFC’2000), Techn. Digest, (Baltimore, MD, USA, 2000), 127–129 (2000)

    Google Scholar 

  56. Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori: “Fabrication of low-loss and polarisation-insensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5% Δ waveguides,” Electron. Lett. 36, 820–821 (2000)

    Google Scholar 

  57. Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, T. Shibata, and A. Himeno: “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C-and L-bands,” Opt. Fiber Commun. Conf. (OFC’01), Techn. Digest (Anaheim, CA, USA, 2001), paper WB2 (2001)

    Google Scholar 

  58. K. Takada, H. Yamada, and K. Okamoto: “320-channel multiplexer consisting of 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett. 35, 824–826 (1999)

    Google Scholar 

  59. K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto: “10 GHz spaced 1010-channel AWG filters achieved by tandem connection of primary and secondary AWGs,” Proc. 26 th Europ. Conf. Opt. Commun. (ECOC’2000), Munich, Germany, paper PD3.8 (2000)

    Google Scholar 

  60. K. Takada, M. Abe, T. Shibata, and K. Okamoto: “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett. 38, 572–573 (2002)

    Google Scholar 

  61. K. Takada, M. Abe, T. Shibata, and K. Okamoto: “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20, 850–853 (2002)

    ADS  Google Scholar 

  62. R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt: “Broadband array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11, 212–219 (1993)

    ADS  Google Scholar 

  63. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida: “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997)

    Google Scholar 

  64. A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita: “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” Electron. Lett. 36, 318–319 (2000)

    Google Scholar 

  65. D. Kim, Y. Han, J. Shin, S. Park, Y. Park, H. Sung, S. Lee, Y. Lee, and D. Kim: “Suppression of temperature and polarization dependence by polymer overcladding in silica-based AWG multiplexer,” Opt. Fiber Commun. Conf. (OFC’03), Techn. Digest (Atlanta, GA, USA, 2003), paper MF50 (2003)

    Google Scholar 

  66. G. Heise, H. W. Schneider, and P. C. Clemens: “Optical phased array filter module with passively compensated temperature dependence,” Proc. 24 th Europ. Conf. Opt. Commun. (ECOC’98), Madrid, Spain, 319–320 (1998)

    Google Scholar 

  67. T. Saito, K. Nara, Y. Nekado, J. Hasegawa, and K. Kashihara: “100 GHz-32ch athermal AWG with extremely low temperature dependency of center wavelength,” Opt. Fiber Comm. (OFC’ 03) vol. 1, Techn. Digest (Atlanta, Georgia, USA, 2003), pp. MF47 pp. 57–59 (2003)

    MATH  Google Scholar 

  68. T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano, and U. Uetsuka: “Novel achitecture of wavelength interleaving filter with Fourier transorm-based MZIs,” Opt. Fiber Commun. Conf. (OFC’01), Techn. Digest (Anaheim, CA, USA, 2001), paper WB5 (2001)

    Google Scholar 

  69. M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino: “Flat-top and low loss WDM filter composed of lattice-form interleave filter and arrayedwaveguide grating on one chip,” Opt. Fiber Commun. Conf. (OFC’01), Techn. Digest (Anaheim, CA, USA, 2001), paper WB3 (2001)

    Google Scholar 

  70. K. Okamoto, K. Takiguchi, and Y. Ohmori: “16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” Electron. Lett. 31, 723–724 (1995)

    ADS  Google Scholar 

  71. K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori: “16-channel optical add/-drop multiplexer consisting of arrayed waveguide gratings and double-gate switches,” Electron. Lett. 32, 1471–1472 (1996)

    Google Scholar 

  72. T. Saida, T. Goh, M. Okuno, A. Himeno, K. Takiguchi, and K. Okamoto: “Athermal silica-based optical add/drop multiplexer consisting of arrayed waveguide gratings and double gate thermo-optical switches,” Electron. Lett. 36, 528–529 (2000)

    Google Scholar 

  73. W. Chen, Z. Zhu, and Y. Chen: “Monolithically integrated 32-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit,” Opt. Fiber Commun. Conf. (OFC’03), Techn. Digest (Atlanta, GA, USA, 2003), paper TuE5 (2003)

    Google Scholar 

  74. W. Chen, Z. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt: “Monolithically integrated 32 × four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit,” IEEE Photon. Technol. Lett. 15, 1413–1415 (2003)

    ADS  Google Scholar 

  75. C. R. Doerr, L. W. Stulz, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, J. V. Cates, S. Shunk, and A. E. White: “40-wavelength add-drop filter,” IEEE Photon. Technol. Lett. 11, 1437–1439 (1999)

    ADS  Google Scholar 

  76. J. E. Ford and J. A. Walker: “Dynamic spectral power equalization using microopto-mechanics,” IEEE Photon. Technol. Lett. 10, 1440–1442 (1998)

    ADS  Google Scholar 

  77. S. H. Huang, X. Y. Zou, S.-M. Hwang, A. E. Willner, Z. Bao, and D. A. Smith: “Experimental demonstration of dynamic network equalization of three 2.5-Gb/s WDM channels over 1000 km using acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 8, 1243–1245 (1996)

    ADS  Google Scholar 

  78. K. Inoue, T. Kominato, and H. Toba: “Tunable gain equalization using a Mach—Zehnder optical filter in multistage fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 718–720 (1991)

    ADS  Google Scholar 

  79. M. Zirngibl, C. H. Joyner, and B. Glance: “Digitally tunable channel dropping filter/equalizer based on waveguide grating router and optical amplifier integration,” IEEE Photon. Technol. Lett. 6, 513–515 (1994)

    ADS  Google Scholar 

  80. C._R. Doerr, C. H. Joyner, and L. W. Stulz: “Integrated WDM dynamic power equalizer with potentially low insertion loss,” IEEE Photon. Technol. Lett. 10, 1443–1445 (1998)

    ADS  Google Scholar 

  81. A. M. Vengsarkar, A. E. Miller, and W. A. Reed: “Highly efficient single-mode fiber for broadband dispersion compensation,” Opt. Fiber Commun. Conf. (OFC’93) Vol. 4, Techn. Digest (San Jose, CA, USA, 1993), post-deadline paper PD13 (1993)

    Google Scholar 

  82. K. O. Hill, S. Theriault, B. Malo, F. Bilodeau, T. Kitagawa, D. D. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto: “Chirped in-fiber Bragg grating dispersion compensators; linearization of dispersion characteristics and demonstration of dispersion compensation in 100 km, 10 Gbit/s optical fiber link,” Electron. Lett. 30, 1755–1756 (1994)

    Google Scholar 

  83. K. Takiguchi, S. Kawanishi, H. Takara, K. Okamoto, K. Jinguji, and Y. Ohmori: “Higher order dispersion equaliser of dispersion shifted fibre using a lattice-form programmable optical filter,” Electron. Lett. 32, 755–757 (1996)

    Google Scholar 

  84. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa: “Design and application of silica-based planar lightwave circuits,” IEEE J. Select. Topics Quantum Electron. 5, 1227–1235 (1999)

    Google Scholar 

  85. U. Hilbk, T. Hermes, J. Saniter, and F.-J. Westphal: “High capacity WDM overlay on a passive optical network,” Electron. Lett. 32, 2162–2163 (1996)

    Google Scholar 

  86. C. R. Giles, R. D. Feldman, T. H. Wood, M. Zirngibl, G. Raybon, T. Strasser, L. Stulz, A. McCormick, C. H. Joyner, and C. R. Doerr: “Access PON using downstream 1550 nm WDM routing and upstream through a fiber-grating router,” IEEE Photon. Technol. Lett. 8, 1549–1551 (1996)

    ADS  Google Scholar 

  87. Y. P. Li, L. G. Cohen, C. H. Henry, E. J. Laskowski, and M. A. Capuzzo: “Demonstration and application of a monolithic two-PONs-in-one device,” Proc. 22 nd Europ. Conf. Opt. Commun. (ECOC’96) Oslo, Norway, paper TuC.3.4 (1996)

    Google Scholar 

  88. M. Zirngibl, C. R. Doerr, and C. H. Joyner: “Demonstration of a splitter/router based on a chirped waveguide grating router,” IEEE Photon. Technol. Lett. 10, 87–89 (1998)

    ADS  Google Scholar 

  89. G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, and R. Steingrüber: “Multichannel 1.3 μm/1.55 μm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998)

    Google Scholar 

  90. B. Kuhlow, G. Przyrembel, E. Pawlowski, M. Ferstl, and W. Fürst: “AWG-based device for a WDM overlay PON in the 1.5-μm band,” IEEE Photon. Technol. Lett. 11, 218–220 (1999)

    ADS  Google Scholar 

  91. G. Przyrembel and B. Kuhlow: “AWG based device for a WDM/PON overlay in the 1.5 μm fiber transmission window,” in Opt. Fiber Commun. Conf. (OFC’99), Techn. Digest, (San Diego, CA, USA, 1999), 207–209 (1999)

    Google Scholar 

  92. B. Kuhlow and G. Przyrembel: “WDM/PON overlay devices in silica technology for the 1.5 μm band,” Proc. 9 th Europ. Conf. Integr. Optics (ECIO’99), Torino, Italy, 215–218 (1999)

    Google Scholar 

  93. G. Przyrembel and B. Kuhlow: “AWG-based devices for a WDM overlay PON,” in WDM Components, Chap. 29, pp. 87–94 (Opt. Soc. America TOP, 2005), ISBN 1-55752-610-9

    Google Scholar 

  94. B. Kuhlow and G. Przyrembel: “Silica based PON-AWG with 2 × 8 up-and downstream channels,” Opt. Fiber Commun. Conf. (OFC’02), Techn. Digest (Anaheim, CA, USA, 2002), 695–697 (2002)

    Google Scholar 

  95. B. Kuhlow and G. Przyrembel: “Device for superposing optical signals with different wavelengths,” US-Patent No. 6 347 166.

    Google Scholar 

  96. T. R. Hayes, M. A. Dreisbach, P. M. Thomas, W. C. Dautremont-Smith, and L. A. Heimbrook: “Reactive ion etching of InP using CH4/H2 mixtures: Mechanisms of etching and anisotropy,” J. Vac. Sci. Technol. B. 7, 1130–1140 (1989)

    Google Scholar 

  97. Y. S. Oei, L. H. Spiekman, F. H. Groen, I. Moerman, E. G. Metaal, and J. W. Pedersen: “Novel RIE-process for high quality InP-based waveguide structures,” Proc. 7 th Europ. Conf. Integr. Optics (ECIO’95), Delft, The Netherlands, 205–208 (1995)

    Google Scholar 

  98. T. Yoshikawa, S. Kohmoto, M. Anan, N. Hamao, M. Baba, N. Takado, Y. Sugimoto, M. Sugimoto, and K. Asakawa: “Chlorine-based smooth reactive ion beam etching of indium-containing III-V compound semiconductor,” Jpn. J. Appl. Phys. 31, 4381–4386 (1992)

    ADS  Google Scholar 

  99. M. Zirngibl, C. Dragone, and C. H. Joyner: “Demonstration of a 15×5 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4, 1250–1253 (1992)

    ADS  Google Scholar 

  100. M. Kohtoku, H. Sanjoy, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata: “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett. 33, 1786–1787 (1997)

    Google Scholar 

  101. C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, I. Moerman, and M. K. Smit: “Ultra-compact polarisation independent PHASAR demultiplexer,” Proc. 24 th Europ. Conf. Opt. Commun. (ECOC’98), Madrid, Spain, 125–126 (1998)

    Google Scholar 

  102. H. Bissessur, P. Pagnod-Rossiaux, R. Mestric, and B. Martin: “Extremely small polarization independent phased-array demultiplexers on InP,” IEEE Photon. Technol. Lett. 8, 554–556 (1996)

    ADS  Google Scholar 

  103. C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, and M. K. Smit: “Low-loss and compact phased-array demultiplexers using a double etch process,” Proc. 9 th Europ. Conf. Integr. Optics (ECIO’99), Torino, Italy, 211–214 (1999)

    Google Scholar 

  104. C. A. M. Steenbergen, C. van Dam, A. Looijen, C. G. P. Herben, M. de Kok, M. K. Smit, J. W. Pedersen, I. Moerman, R. G. Baets, and B. H. Verbeek: “Compact low-loss 8 × 10 GHz polarization independent WDM receiver,” Proc. 22 nd Europ. Conf. Opt. Commun. (ECOC’96), Oslo, Norway, 1.129–1.131 (1996)

    Google Scholar 

  105. M. Zirngibl, C. H. Joyner, and P. C. Chou: “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995)

    Google Scholar 

  106. C. G. M. Vreeburg, C. G. P. Herben, X. J. M. Leijtens, M. K. Smit, F. H. Groen, J. J. G. M. van der Tol, and P. Demeester: “A low-loss 16-channel polarization dispersion-compensated PHASAR demultiplexer,” IEEE Photon. Technol. Lett. 10, 382–384 (1998)

    ADS  Google Scholar 

  107. H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni: “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10, 235–237 (1998)

    ADS  Google Scholar 

  108. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit: “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004)

    ADS  Google Scholar 

  109. M. Kohtoku, Y. Shibata, and Y. Yoshikuni: “Evaluation of the rejection ratio of an MMI-based higher order mode filter using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 14, 968–970 (2002)

    ADS  Google Scholar 

  110. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori: “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett. 16, 2481–2483 (2004)

    ADS  Google Scholar 

  111. M. Kohtoku, T. Hirono, Member, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni: “Control of higher order leaky modes in deep-ridge waveguides and application to low-crosstalk arrayed waveguide gratings,” J. Lightwave Technol. 22, 499–508 (2004)

    ADS  Google Scholar 

  112. M. G. Young, U. Koren, B. I. Miller, M. Chien, T. L. Koch, D. M. Tennant, K. Feder, K. Dreyer, and G. Raybon: “Six wavelength laser array with integrated amplifier and modulator,” Electron. Lett. 31, 1835–1836 (1995)

    Google Scholar 

  113. C. E. Zah, F. J. Favire, B. Pathak, R. Bhat, C. Caneau, P. S. D. Lin, A. S. Gozdz, N. C. Andreadakis, M. A. Koza, and T. P. Lee: “Monolithic integration of multiwavelength compressive-strained multiquantum-well distributed-feedback laser array with star coupler and optical amplifiers,” Electron. Lett. 28, 2361–2362 (1992)

    Google Scholar 

  114. R. Nagarajan, C. H. Joyner, R. P. Schneider, Jr., J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, H.-S. Tsai, M. F. van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch: “Large-scale photonic integrated circuits,” IEEE J. Select. Topics Quantum Electron. 11, 50–65 (2005)

    Google Scholar 

  115. M. Zirngibl and C. H. Joyner: “12 frequency WDM laser based on a transmissive waveguide grating router,” Electron. Lett. 30, 701–702 (1994)

    ADS  Google Scholar 

  116. M. Zirngibl, B. Glance, L. W. Stulz, C. H. Joyner, G. Raybon, and I. P. Kaminow: “Characterization of a multiwavelength waveguide grating router laser,” IEEE Photon. Technol. Lett. 6, 1082–1084 (1994)

    ADS  Google Scholar 

  117. C. H. Joyner, M. Zirngibl, and J. C. Centanni: “An 8-channel digitally tunable transmitter with electroabsorption modulated output by selective area epitaxy,” IEEE Photon. Technol. Lett. 7, 1013–1015 (1995)

    ADS  Google Scholar 

  118. A. A. M. Staring, L. H. Spiekman, J. J. M. Binsma, E. J. Jansen, T. van Dongen, P. A. J. Thijs, M. K. Smit, and B. H. Verbeek: “A compact nine-channel multi-wavelength laser,” IEEE Photon. Technol. Lett. 8, 1139–1141 (1996)

    ADS  Google Scholar 

  119. R. Monnard, A. K. Srivastava, C. R. Doerr, C. H. Joyner, L. W. Stulz, M. Zirngibl, Y. Sun, J. W. Sulhoff, J. L. Zyskind, and C. Wolf: “16-channel 50 GHz channel spacing long-haul transmitter for DWDM systems,” Electron. Lett. 34, 765–767 (1998)

    Google Scholar 

  120. C. R. Doerr, C. H. Joyner, and L. W. Stulz: “40-wavelength rapidly digitally tunable laser,” IEEE Photon. Technol. Lett. 11, 1348–1350 (1999)

    ADS  Google Scholar 

  121. D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr: “Compact digitally tunable laser,” IEEE Photon. Technol. Lett. 15, 182–184 (2003)

    ADS  Google Scholar 

  122. J. H. den Besten, R. G. Broeke, M. van Geemert, J. J. M. Binsma, F. Heinrichsdorff, T. van Dongen, E. A. J. M. Bente, X. J. M. Leijtens, and M. K. Smit: “An integrated coupled-cavity 16-wavelength digitally tunable laser,” IEEE Photon. Technol. Lett. 14, 1653–1655 (2002) erratum: 15, 353 (2003)

    ADS  Google Scholar 

  123. J. H. den Besten, R. G. Broeke, M. van Geemert, J. J. M. Binsma, F. Heinrichsdorff, T. van Dongen, E. A. J. M. Bente, X. J. M. Leijtens, and M. K. Smit: “A compact digitally tunable seven-channel ring laser,” IEEE Photon. Technol. Lett. 14, 753–755 (2002)

    ADS  Google Scholar 

  124. E. A. J. M. Bente, Y. Barbarin, J. H. den Besten, M. K. Smit, and J. J. M. Binsma: “Wavelength selection in an integrated multiwavelength ring laser,” IEEE J. Quantum Electron. 40, 1208–1216 (2004)

    ADS  Google Scholar 

  125. T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba: “A multiwavelength fiber ring-laser employing pair of silica-based arrayed-waveguide-gratings,” IEEE Photon. Technol. Lett. 9, 910–912 (1997)

    ADS  Google Scholar 

  126. N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Vlachos, and H. Avramopoulos: “50 channel and 50 GHz multiwavelength laser source,” Proc. 27th Europ. Conf. Opt. Commun. (ECOC’01), Amsterdam, The Netherlands, 410–411 (2001)

    Google Scholar 

  127. M. Nikoufard, X. J. M. Leijtens, Y. C. Zhu, T. J. J. Kwaspen, E. A. J. M. Bente, and M. K. Smit: “An 8 × 25 GHz polarization-independent integrated multi-wavelength receiver,” Integrated Photonics Research (IPR’04), Techn. Digest (San Francisco, CA, USA, 2004), paper IThB2 (2004)

    Google Scholar 

  128. M. R. Amersfoort, J. B. D. Soole, H. P. Leblanc, N. C. Andreakakis, A. Rajhel, and C. Caneau: “8 × 2 nm polarization-independent WDM detector based on compact arrayed waveguide demultiplexer,” Integrated Photonics Research (IPR’95), Techn. Digest (Dana Point, CA, USA, 1995), post-deadline paper PD3 (1995)

    Google Scholar 

  129. M. Zirngibl, C. H. Joyner, and L. W. Stulz: “WDM receiver by monolithic integration of an optical preamplifier, waveguide grating router and photodiode array,” Electron. Lett. 31, 581–582 (1995)

    ADS  Google Scholar 

  130. W. Tong, V. M. Menon, X. Fengnian, and S. R. Forrest: “An asymmetric twin waveguide eight-channel polarization-independent arrayed waveguide grating with an integrated photodiode array,” IEEE Photon. Technol. Lett. 16, 1170–1172 (2004)

    ADS  Google Scholar 

  131. S. Chandrasekhar, M. Zirngibl, A. G. Dentai, C. H. Joyner, F. Storz, C. A. Burrus, and L. M. Lunardi: “Monolithic eight-wavelength demultiplexed receiver for dense WDM applications,” IEEE Photon. Technol. Lett. 7, 1342–1344 (1995)

    ADS  Google Scholar 

  132. R. Mestric, C. Porcheron, B. Martin, F. Pommereau, I. Guillemont, F. Gaborit, C. Fortin, J. Rotte, and M. Renaud: “Sixteen-channel wavelength selector monolithically integrated on InP,” Opt. Fiber Commun. Conf. (OFC’2000), Techn. Digest (Baltimore, MD, USA, 2000), 81–83 (2000)

    Google Scholar 

  133. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori: “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38, 331–332 (2002)

    Google Scholar 

  134. D. Van Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot: “Novel geometry for an integrated channel selector,” IEEE J. Select. Topics Quantum Electron. 8, 1211–1214 (2002)

    Google Scholar 

  135. C. G. M. Vreeburg, T. Uitterdijk, Y. S. Oei, M. K. Smit, F. H. Groen, E. G. Metaal, P. Demeester, and H. J. Frankena: “First InP-based reconfigurable integrated add-drop multiplexer,” IEEE Photon. Technol. Lett. 9, 188–190 (1997)

    ADS  Google Scholar 

  136. C. G. P. Herben, X. J. M. Leijtens, M. R. Leys, F. H. Groen, and M. K. Smit: “Extremely compact WDM cross connect on InP,” Proc. IEEE/LEOS Symposium (Benelux Chapter), Delft, The Netherlands, 17–20 (2000)

    Google Scholar 

  137. T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara: “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997)

    Google Scholar 

  138. J. Kobayashi, Y. Inoue, T. Matsuura, and T. Maruno: “Tunable and polarization-insensitive arrayed-waveguide grating multiplexer fabricated from fluorinated polyimides,” IEICE Trans. Electron. E81–C, 1020–1026 (1998)

    Google Scholar 

  139. J.-H. Ahn, H.-J. Lee, W.-Y. Hwang, M.-C. Oh, M. H. Lee, S. G. Han, H.-G. Kim, and C. H. Yim: “Polymeric 1×16 arrayed waveguide grating multiplexer using fluorinated poly(acrylene ethers) at 1550 nm,” IEICE Trans. Electron. E82–B, 406–408 (1999)

    Google Scholar 

  140. C. L. Callender, J.-F. Viens, J. P. Noad, and L. Eldada: “Compact low-cost tunable acrylate polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 35, 1839–1840 (1999)

    Google Scholar 

  141. N. Keil, H. H. Yao, C. Zawadski, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider: “Athermal all-polymer arrayed waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001)

    Google Scholar 

  142. N. Keil, H. H. Yao, C. Zawadzki, and B. Strebel: “Re-arrangeable nonblocking polymer waveguide thermo-optic 4×4 switching matrix with low power consumption at 1.55 μm,” Electron. Lett. 31, 403–404 (1995)

    Google Scholar 

  143. N. Keil, C. Weinert, W. Wirges, H. H. Yao, C. Zawadzki, J. Schneider, J. Bauer, M. Bauer, K. Lösch, K. Satzke, W. Wischmann, and J. v. Wirth: “Thermo-optic switches using vertically coupled polymer/silica waveguides,” Proc. 26 th Europ. Conf. Opt. Commun. (ECOC’2000), Munich, Germany, 117–120 (2000)

    Google Scholar 

  144. G. L. Bona, E. Flück, F. Horst, B. J. Offrein, H. W. M. Salemink, and R. Germann: “Flexible thermo-optical switch in SiON planar waveguides,” Proc. 9 th Europ. Conf. Integr. Optics (ECIO’99), Torino, Italy, 65–68 (1999)

    Google Scholar 

  145. T. Shimoda, K. Suzuki, S. Takaesu, and A. Furukawa: “Low-loss, polarization-independent silicon-oxynitride waveguides for high-density integrated planar lightwave circuits,” Proc. 28 th Europ. Conf. Opt. Commun. (ECOC’02), Copenhagen, Denmark, paper 4.2.2 (2002)

    Google Scholar 

  146. F. Horst, R. Beyeler, G. L. Bona, E. Flück, R. Germann, B. Offrein, H. Salemink, and D. Wiesmann: “Compact, tunable optical devices in silicon-oxynitride waveguide technology,” Integrated Photonics Research (IPR’2000), Techn. Digest (Quebec, Canada, 2000), paper IThF1 (2000)

    Google Scholar 

  147. B. Schauwecker, M. Arnold, C. Radehaus, G. Przyrembel, and B. Kuhlow: “Optical waveguide components with high refractive index difference in siliconoxynitride for application in integrated optoelectronics,” Opt. Engineering 41, 237–243 (2002)

    ADS  Google Scholar 

  148. B. Schauwecker, G. Przyrembel, B. Kuhlow, and C. Radehaus: “Small-size silicon-oxynitride AWG demultiplexer operating around 725 nm,” IEEE Photon. Technol. Lett. 12, 1645–1646 (2000)

    ADS  Google Scholar 

  149. A. P. Harpin: “Integrated optics in silicon: coming of age,” Silicon-based monolithic and hybrid optoelectronic devices,” Proc. SPIE 3007, 128–135 (1997)

    ADS  Google Scholar 

  150. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu: “Silicon on insulator Mach-Zehnder waveguide interferometer operating at 1.3 μm,” Appl. Phys. Lett. 67, 2448–2449 (1995)

    ADS  Google Scholar 

  151. I. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. Tsang, and M. Asghari: “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” Opt. Fiber Commun. Conf. (OFC’03), Techn. Digest (Atlanta, GA, USA, 2003), 249–251 (2003)

    Google Scholar 

  152. U. Fischer, T. Zinke, B. Schüppert, and K. Petermann: “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30, 406–408 (1994)

    Google Scholar 

  153. R. A. Soref, J. Schmidtchen, and K. Petermann: “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991)

    ADS  Google Scholar 

  154. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme: “Fast thermo-optical switch based on SOI waveguides,” Photonics West, Proc. SPIE: Integrated Optics: Devices, Materials, and Technologies VII, vol. 4987, 149–159 (2003)

    ADS  Google Scholar 

  155. A. House, R. Whiteman, L. Kling, S. Day, A. Knights, F. H. D. Hogan, and M. Asghari: “Silicon waveguide integrated optical switching with microsecond switching speed,” Opt. Fiber Commun. Conf. (OFC’03), Techn. Digest (Atlanta, GA, USA, 2003), vol. 2, 449–450 (2003)

    Google Scholar 

  156. I. E. Day, S. W. Roberts, R. O. Caroll, A. Knights, P. Sharp, G. F. Hopper, B. J. Luff, and M. Asghari: “Single-chip variable optical attenuator and multiplexer subsystem integration,” Opt. Fiber Commun. Conf. (OFC/IOOC’02), Techn. Digest (Anaheim, CA, USA, 2002), 72–73 (2002)

    Google Scholar 

  157. A. Knights, A. House, R. MacNaughton, and F. Hopper: “Optical power monitoring function compatible with single chip integration on silicon-on-insulator,” Opt. Fiber Commun. Conf. (OFC’03), Techn. Digest (Atlanta, GA, USA, 2003), vol. 2, 705–706 (2003)

    Google Scholar 

  158. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger: “Advances in silica-on-insulator optoelctronics,” IEEE J. Select. Topics Quantum Electron. 4, 938–947 (1998)

    Google Scholar 

  159. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali: “Silicon-oninsulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997)

    ADS  Google Scholar 

  160. G. T. Reed and A. P. Knights: Silicon Photonics: An Introduction (Wiley, New York, 2004)

    Google Scholar 

  161. A. Gerster, M. Maile, and C. Hentschel: “State-of-the-art characterization of optical components for DWDM applications,” Agilent Technologies, Application Brief (2001)

    Google Scholar 

  162. Handbook of Optics, vol. I (McGraw-Hill, New York, 1994) Chap. 5 “Polarization,” ISBN 007047740X.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leijtens, X.J.M., Kuhlow, B., Smit, M.K. (2006). Arrayed Waveguide Gratings. In: Venghaus, H. (eds) Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences, vol 123. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31770-8_5

Download citation

Publish with us

Policies and ethics