Skip to main content

Phase Characteristics of Optical Filters

  • Chapter
Wavelength Filters in Fibre Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 123))

  • 2505 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. P. Agrawal: Fiber-optic communication systems, Chap. 2 (Wiley, New York, 1997)

    Google Scholar 

  2. N. N. Khrais, F. Shehadeh, J.-C. Chiao, R. S. Vodhanel, and R. E. Wagner: “Multiplexer eye-closure penalties for 10 Gb/s signals in WDM networks,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’96), San Jose, California, USA, PD33 (1996)

    Google Scholar 

  3. C. Caspar, H.-M. Foisel, C. v. Helmolt, B. Strebel, and Y. Sugaya: “Comparison of cascadability performance of different types of commercially available wavelength (de)multiplexers,” Electron. Lett. 33, 1624–1626 (1997)

    Google Scholar 

  4. G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, and G. Nykolak: “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998)

    ADS  Google Scholar 

  5. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher: “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998)

    ADS  Google Scholar 

  6. M. Kuznetsov, N. M. Froberg, S. R. Henion, and K. A. Rauschenbach: “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photon. Technol. Lett. 11, 1411–1413 (1999)

    ADS  Google Scholar 

  7. L. G. Cohen: “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. LT-3, 958–966 (1985)

    ADS  Google Scholar 

  8. P. Hernday: “Dispersion measurements,” in Fiber Optic Test and Measurement (D. Derickson, ed.), Chap. 12 (Prentice Hall, Upper Saddle River, NJ 1998)

    Google Scholar 

  9. W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann: “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 13, 574–576 (1988)

    ADS  Google Scholar 

  10. A. Papoulis: The Fourier integral and its applications, Chap. 10 (McGraw-Hill, New York, 1962)

    MATH  Google Scholar 

  11. H. W. Bode: Network analysis and feedback amplifier design, (Van Nostrand, New York, 1945)

    Google Scholar 

  12. L. D. Landau, E. M. Lifschitz, and L. P. Pitaevskii, Electrodynamics of continuous media, 2nd edition, pp. 279–283, (Butterworth-Heinemann, Oxford, 1984)

    MATH  Google Scholar 

  13. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. van Stryland: “Kramers-Krönig relations in nonlinear optics,” Opt. Quant. Electron. 24, 1–30 (1992)

    Google Scholar 

  14. M. Beck, I. A. Walmsley, and J. D. Kafka: “Group delay measurements of optical components near 800 nm,” IEEE J. Quantum Electron. 27, 2074–2081 (1991)

    ADS  Google Scholar 

  15. R. H. J. Kop, P. de Vries, R. Sprik, and A. Lagendijk: “Kramers-Kronig relations for an interferometer,” Opt. Commun. 138, 118–126 (1997)

    ADS  Google Scholar 

  16. M. A. Muriel and A. Carballar: “Phase reconstruction from reflectivity in uniform fiber Bragg gratings,” Opt. Lett. 22, 93–95 (1997)

    ADS  Google Scholar 

  17. A. Carballar and M. A. Muriel: “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightwave Technol. 15, 1314–1322 (1997)

    ADS  Google Scholar 

  18. D. Pastor and J. Capmany: “Experimental demonstration of phase reconstruction from reflectivity in uniform fibre Bragg gratings using the Wiener-Lee transform,” Electron. Lett. 34, 1344–1345 (1998)

    Google Scholar 

  19. J. Skaar and H. E. Engan: “Phase reconstruction from reflectivity in fibre Bragg gratings,” Opt. Lett. 24, 136–138 (1999)

    ADS  Google Scholar 

  20. L. Poladian: “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22, 1571–1573 (1997)

    ADS  Google Scholar 

  21. F. W. King: “Analysis of optical data by the conjugate Fourier-series approach,” J. Opt. Soc. Am. 68, 994–997 (1978)

    ADS  Google Scholar 

  22. B. Harbecke: “Application of Fourier’s allied integrals to the Kramers-Kronig transformation of reflectance data,” Appl. Phys. A 40, 151–158 (1986)

    ADS  Google Scholar 

  23. F. W. King: “Efficient numerical approach to the evaluation of Kramers-Kronig transforms,” J. Opt. Soc. Am. B 19, 2427–2436 (2002)

    ADS  Google Scholar 

  24. K. B. Rochford and S. D. Dyer: “Reconstruction of minimum-phase group delay from fibre Bragg grating transmittance/reflectance measurements,” Electron. Lett. 35, 838–839 (1999)

    Google Scholar 

  25. A. Ozcan, M. J. F. Digonnet, and G. S. Kino: “Group delay recovery using iterative processing of amplitude of transmission spectra of fibre Bragg gratings,” Electron. Lett. 40, 1104–1106 (2004)

    Google Scholar 

  26. T. Erdogan: “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997)

    ADS  Google Scholar 

  27. C. J. Brooks, G. L. Vossler, and K. A. Winick: “Phase response measurement technique for waveguide grating filters,” Appl. Phys. Lett. 66, 2168–2170 (1995)

    ADS  Google Scholar 

  28. S. Barcelos, M. N. Zervas, R. I. Laming, and D. N. Payne; “Interferometric fibre grating characterization,” IEE Colloquium on Optical Fibre Gratings and their Applications, pp. 5/1–5/7, (1995)

    Google Scholar 

  29. S. Barcelos, M. N. Zervas, R. I. Laming, D. N. Payne, L. Reekie, J. A. Tucknott, R. Kashyap, P. F. McKee, F. Sladen, and B. Wojciechowicz: “High accuracy dispersion measurements of chirped fibre gratings,” Electron. Lett. 31, 1280–1282 (1995)

    Google Scholar 

  30. M. Beck and I. A. Walmsley: “Measurement of group delay with high temporal and spectral resolution,” Opt. Lett. 15, 492–494 (1990)

    ADS  Google Scholar 

  31. P. Merritt, R. P. Tatam, and D. A. Jackson: “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989)

    ADS  Google Scholar 

  32. X. S. Yao and J. Feinberg: “Simple in-line method to measure the dispersion of an optical system,” Appl. Phys. Lett. 62, 811–813 (1993)

    ADS  Google Scholar 

  33. D. Müller, J. West, and K. Koch: “Interferometric chromatic dispersion measurement of a photonic bandgap fiber,” Proc. SPIE 4870, 395–403, (2002)

    ADS  Google Scholar 

  34. P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard: “Three ways to implement interferencial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities,” J. Lightwave Technol. 7, 500–513 (1989)

    ADS  Google Scholar 

  35. K. Naganuma, K. Mogi, and H. Yamada: “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990)

    ADS  Google Scholar 

  36. S. Diddams and J.-C. Diels: “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996)

    ADS  Google Scholar 

  37. J. Gehler and W. Spahn: “Dispersion measurement of arrayed-waveguide gratings by Fourier transform spectroscopy,” Electron. Lett. 36, 338–339 (2000)

    Google Scholar 

  38. S. D. Dyer, K. B. Rochford, and A. H. Rose: “Fast and accurate low coherence interferometric measurements of fiber Bragg grating dispersion and reflectance,” Opt. Express 5, 262–266 (1999)

    ADS  Google Scholar 

  39. M. Volanthen, H. Geiger, M. J. Cole, R. I. Laming, and J. P. Dakin: “Low coherence technique to characterise reflectivity and time delay as a function of wavelength within a long fibre grating,” Electron. Lett. 32, 757–758 (1996)

    Google Scholar 

  40. S. D. Dyer and K. B. Rochford: “Low-coherence interferometric measurements of fibre Bragg grating dispersion,” Electron. Lett. 35, 1485–1486 (1999)

    Google Scholar 

  41. S. D. Dyer and K. B. Rochford: “Low-coherence interferometric measurements of the dispersion of multiple fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 230–232 (2001)

    ADS  Google Scholar 

  42. H. Yamada, K. Okamoto, A. Kaneko, and A. Sugita: “Dispersion resulting from phase and amplitude errors in arrayed-waveguide grating multiplexersdemultiplexers,” Opt. Lett. 25, 569–571 (2000)

    ADS  Google Scholar 

  43. H. Yamada, H. Sanjoh, M. Kohtoku, K. Takada, and K. Okamoto: “Measurement of phase and amplitude error distributions in arrayed-waveguide grating multi/ demultiplexers based on dispersive waveguide,” J. Lightwave Technol. 18, 1309–1320 (2000)

    ADS  Google Scholar 

  44. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni: “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. QE-18, 1509–1514 (1982)

    ADS  Google Scholar 

  45. S. Ryu, Y. Horiuchi, and K. Mochizuki: “Novel chromatic dispersion measurement method over continuous Gigahertz tuning range,” J. Lightwave Technol. 7, 1177–1180 (1989)

    ADS  Google Scholar 

  46. K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori: “Planar lightwave circuit optical dispersion equaliser,” Proc. European Conf. Opt. Commun. (ECOC’93), vol. 3, pp. 33–36, ThC 12.9 (1993)

    Google Scholar 

  47. ITU-T Recommendation G.650.1, Definition and test methods for linear, deterministic attributes of single-mode fibre and cable (International Telecommunications Union, Geneva, Switzerland, 2004)

    Google Scholar 

  48. T. Niemi, G. Genty, and H. Ludvigsen: “Group-delay measurements using the phase-shift method: improvement on the accuracy,” Proc. European Conf. Opt. Commun. (ECOC’01), Amsterdam, The Netherlands, Th.M.1.5 (2001)

    Google Scholar 

  49. T. Niemi, M. Uusimaa, and H. Ludvigsen: “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001)

    ADS  Google Scholar 

  50. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: Numerical recipes in C, 2nd edition, Chap. 14.8, (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  51. A. J. Barlow, R. S. Jones, and K. W. Forsyth: “Technique for direct measurement of single-mode fiber chromatic dispersion,” J. Lightwave Technol. LT-5, 1207–1213 (1987)

    ADS  Google Scholar 

  52. J. B. Schlager, S. E. Mechels, and D. L. Franzen: “Precise laser-based measurements of zero-dispersion wavelength in single-mode fibers,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’96), vol. 2, pp. 293–294, FA2 (1996)

    Google Scholar 

  53. S. E. Mechels, J. B. Schlager, and D. L. Franzen: “Accurate measurements of the zero-dispersion wavelength in optical fibers,” J. Res. Natl. Inst. Stand. Technol. 102, 333–347 (1997)

    Google Scholar 

  54. G. H. Smith, D. Novak, and Z. Ahmed: “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997)

    Google Scholar 

  55. J. E. Román, M. Y. Frankel, and R. D. Esman: “Spectral characterization of fiber gratings with high resolution,” Opt. Lett. 23, 939–941 (1998)

    Google Scholar 

  56. R. M. Fortenberry: “Enhanced wavelength resolution chromatic dispersion measurements using fixed side-band technique,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’00), Baltimore, Maryland, USA, vol 1, pp 107–109, TuG8 (2000)

    Google Scholar 

  57. G. Genty, T. Niemi, and H. Ludvigsen: “New method to improve the accuracy of group delay measurements using the phase-shift technique,” Opt. Commun. 204, 119–126 (2002)

    ADS  Google Scholar 

  58. R. Fortenberry, W. V. Sorin, and P. Hernday: “Improvement of group delay measurement accuracy using a two-frequency modulation phase-shift method,” IEEE Photon. Technol. Lett. 15, 736–738 (2003)

    ADS  Google Scholar 

  59. T. Dennis and P. A. Williams: “Relative group delay measurements with 0.3 ps resolution: toward 40 Gbit/s component metrology,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’02), Anaheim, California, USA, pp 254–256, WK3 (2002)

    Google Scholar 

  60. T. Dennis and P. A. Williams: “Chromatic dispersion measurement error caused by source amplified spontaneous emission,” IEEE Photon. Technol. Lett. 16, 2532–2534 (2004)

    ADS  Google Scholar 

  61. S. Y. Set, M. K. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi: “Rapid amplitude and group-delay measurement system based on intra-cavity modulated sweptlasers,” IEEE Trans. Instrum. Meas. 53, 192–196 (2004)

    Google Scholar 

  62. A. H. Rose, C.-M. Wang, and S. D. Dyer: “Round robin for optical fiber Bragg grating metrology,” J. Res. Natl. Inst. Stand. Technol. 105, 839–866 (2000)

    Google Scholar 

  63. F. Devaux, Y. Sorel, and J. F. Kerdiles: “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993)

    ADS  Google Scholar 

  64. B. Christensen, J. Mark, G. Jacobsen, and E. Bødtker: “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993)

    Google Scholar 

  65. C. Peucheret, F. Liu, and R. J. S. Pedersen: “Measurement of small dispersion values in optical components,” Electron. Lett. 35, 409–411 (1999)

    Google Scholar 

  66. D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher: “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23, 668–669 (1987)

    Google Scholar 

  67. C. K. Madsen and J. H. Zhao: Optical filter design and analysis, a signal processing approach (Wiley, New York, 1999)

    Google Scholar 

  68. M. Scobey and R. Hallock: “Thin film filter based components for optical add/drop,” in OSA Trends in Optics and Photonics, WDM components, (D. A. Nolan, ed.), vol 29, pp. 25–33, (Opt. Soc. America, Washington, DC, 1999)

    Google Scholar 

  69. B. Nyman, M. Farries, and C. Si: “Technology trends in dense WDM demultiplexers,” Opt. Fib. Technol. 7, 255–274 (2001)

    ADS  Google Scholar 

  70. K. Zhang, J. Wang, E. Schwendeman, D. Dawson-Elli, R. Faber, and R. Sharps: “Group delay and chromatic dispersion of thin-film-based, narrow bandpass filters used in dense wavelength-division-multiplexed systems,” Appl. Opt 41, 3172–3175 (2002)

    ADS  Google Scholar 

  71. R. B. Sargent: “Recent advances in thin film filters,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’04), Los Angeles, California, USA, TuD6 (2004)

    Google Scholar 

  72. R. M. Fortenberry, M. E. Wescott, L. P. Ghislain, and M. A. Scobey: “Low chromatic dispersion thin film DWDM filters for 40 Gb/s transmission systems,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’02), Anaheim, California, USA, pp. 319–320, WS2 (2002)

    Google Scholar 

  73. M. Tilsch, C. A. Hulse, F. K. Zernik, R. A. Modavis, C. J. Addiego, R. B. Sargent, N. A. O’Brien, H. Pinkney, and A. V. Turukhin: “Experimental demonstration of thin-film dispersion compensation for 50-GHz filters,” IEEE Photon. Technol. Lett. 15, 66–68 (2003)

    ADS  Google Scholar 

  74. M. K. Smit and C. van Dam: “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Select. Topics Quantum Electron. 2, 236–250 (1996)

    Google Scholar 

  75. H. Takahashi, K. Oda, H. Toba, and Y. Inoue: “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995)

    ADS  Google Scholar 

  76. H. Yamada, H. Sanjoh, M. Kohtoku, and K. Takada: “Measurement of phase and amplitude error distributions in InP-based arrayed-waveguide grating multi / demultiplexers,” Electron. Lett. 36, 136–138 (2000)

    Google Scholar 

  77. P. Muñoz, D. Pastor, J. Capmany, and S. Sales: “Analytical and numerical analysis of phase and amplitude errors in the performance of arrayed waveguide gratings,” IEEE J. Select. Topics Quantum Electron. 8, 1130–1141 (2002)

    Google Scholar 

  78. C. X. Yu, D. T. Neilson, C. R. Doerr, and M. Zirngibl: “Dispersion free (de)mux with record figure-of-merit,” IEEE Photon. Technol. Lett. 14, 1300–1302 (2002)

    ADS  Google Scholar 

  79. R. Ryf, Y. Su, L. Möller, S. Chandrasekhar, X. Liu, D. T. Neilson, and C. Randy Giles: “Wavelength blocking filter with flexible data rates and channel spacing,” J. Lightwave Technol. 23, 54–61 (2005)

    ADS  Google Scholar 

  80. O. Schwelb: “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters — a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004)

    ADS  Google Scholar 

  81. X. Liu: “Can 40-Gb/s duobinary signals be carried over transparent DWDM systems with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 17, 1328–1330, (2005)

    ADS  Google Scholar 

  82. N. Hanik, A. Ehrhardt, A. Gladisch, C. Peucheret, P. Jeppesen, L. Molle, R. Freund, and C. Caspar: “Extension of all-optical network-transparent domains based on normalized transmission sections,” J. Lightwave Technol. 22, 1439–1453 (2004)

    ADS  Google Scholar 

  83. A. H. Gnauck and R. M. Jopson: “Dispersion compensation for optical fiber systems,” in Optical Fiber Telecommunications IIIA (I. P. Kaminow and T. L. Koch, eds.), Chap. 7 (Academic Press, San Diego, 1997)

    Google Scholar 

  84. M. Yamada and K. Sakuda: “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478, (1987)

    ADS  Google Scholar 

  85. M. Ibsen, H. Geiger, and R. I. Laming: “In-band dispersion limitations of uniform apodised fibre gratings,” Proc. European Conf. Opt. Commun. (ECOC’98), Madrid, Spain, vol. 1, pp. 413–414 (1998)

    Google Scholar 

  86. L. R. Chen and P. W. E. Smith: “Fibre Bragg grating transmission filters with near-ideal filter response,” Electron. Lett. 34, 2048–2050 (1998)

    Google Scholar 

  87. G. Nykolak, G. Lenz, B. J. Eggleton, and T. A. Strasser: “Impact of fiber grating dispersion on WDM system performance,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’98), San Jose, California, USA, vol. 2, pp. 4–5, TuA3 (1998)

    Google Scholar 

  88. G. Nykolak, B. J. Eggleton, G. Lenz, and T. A. Strasser: “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998)

    ADS  Google Scholar 

  89. G. Lenz, G. Nykolak, and B. J. Eggleton: “Dispersion of optical filters in WDM systems: theory and experiment,” Proc. European Conf. Opt. Commun. (ECOC’98), Madrid, Spain, vol. 1, pp. 271–272 (1998)

    Google Scholar 

  90. G. Lenz, G. Nykolak, and B. J. Eggleton: “Waveguide grating routers for dispersionless filtering in WDM system at channel rate of 10 Gbit/s,” Electron. Lett. 34, 1683–1684 (1998)

    Google Scholar 

  91. P. Leisching, H. Bock, A. Richter, D. Stoll, and G. Fischer: “Optical add/drop multiplexer for dynamic channel routing,” Electron. Lett. 35, 591–592 (1999)

    Google Scholar 

  92. K. P. Jones, M. S. Chaudhry, D. Simeonidou, N. H. Taylor, and P. R. Morkel: “Optical wavelength add-drop multiplexer in installed submarine WDM network,” Electron. Lett. 31, 2117–2118 (1995)

    Google Scholar 

  93. B. J. Eggleton, G. Lenz, N. Litchinitser, D. B. Patterson, and R. E. Slusher: “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1403–1405 (1997)

    ADS  Google Scholar 

  94. N. M. Litchinitser, B. J. Eggleton, G. Lenz, and G. P. Agrawal: “Dispersion in cascaded-grating-based add/drop filters,” Techn. Dig. Conf. Lasers and Electro-Optics, (CLEO’98), CTh015 (1998)

    Google Scholar 

  95. N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal: “Dispersion of cascaded fiber gratings in WDM lightwave systems,” J. Lightwave Technol. 16, 1523–1529 (1998)

    ADS  Google Scholar 

  96. H. Geiger and M. Ibsen: “Complexity limitations of optical networks from out-of-band dispersion of grating filters,” Proc. European Conf. Opt. Commun. (ECOC’98), Madrid, Spain, vol. 1, pp. 405–406 (1998)

    Google Scholar 

  97. L. Poladian: “Design constraints for wavelength-division-multiplexed filters with minimal side-channel impairment,” Opt. Lett. 26, 7–9 (2001)

    ADS  Google Scholar 

  98. C. Peucheret, A. Buxens, T. Rasmussen, C. F. Pedersen, and P. Jeppesen: “Cascadability of fibre Bragg gratings for narrow channel spacing systems using NRZ and duobinary modulation,” Proc. OptoElectron. Commun. Conf. (OECC’01), Sydney, Australia, pp. 92–93, TUA3 (2001)

    Google Scholar 

  99. H. Bock, P. Leisching, A. Richter, D. Stoll, and G. Fischer: “System impact of cascaded optical add/drop multiplexers based on tunable fiber Bragg gratings,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’00), Baltimore, Maryland, USA, vol. 2, pp. 296–298 (2000)

    Google Scholar 

  100. M. Kuznetsov, N. M. Froberg, S. R. Henion, C. Reinke, and C. Fennelly: “Dispersion-induced power penalty in fiber-Bragg-grating WDM filter cascades using optically preamplifed and nonpreamplified receivers,” IEEE Photon. Technol. Lett. 12, 1406–1408 (2000)

    ADS  Google Scholar 

  101. M. Kuznetsov, N. M. Froberg, S. R. Henion, C. Reinke, C. Fennelly, and K. A. Rauschenbach: “Dispersion-induced power penalty in fiber-Bragg-grating WDM filter cascades,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’00), Baltimore, Maryland, vol. 2, pp. 311–313 (2000)

    Google Scholar 

  102. K. H. Ylä-Jarkko, M. N. Zervas, M. K. Durkin, I. Barry, and A. B. Grudinin: “Power penalties due to in-band and out-of-band dispersion in FBG cascades,” J. Lightwave Technol. 21, 506–510 (2003)

    ADS  Google Scholar 

  103. S. Bigo: “Multiterabit/s DWDM terrestrial transmission with bandwidth-limiting optical filtering,” IEEE J. Select. Topics Quantum Electron. 10, 329–340 (2004)

    Google Scholar 

  104. H. Kim and A. H. Gnauck: “10 Gbit/s 177 km transmission over conventional singlemode fibre using a vestigial side-band modulation format,” Electron. Lett. 37, 1533–1534 (2001)

    Google Scholar 

  105. Y. Kim, S. Kim, I. Lee, and J. Jeong: “Optimization of transmission performance of 10-Gb/s optical vestigial side-band signals using electrical dispersion compensation by numerical simulation,” IEEE J. Select. Topics Quantum Electron. 10, 371–375 (2004)

    MATH  Google Scholar 

  106. C. X. Yu, S. Chandrasekhar, T. Zhou, and D. T. Neilson: “0.8 bit/s/Hz spectral efficiency at 10 Gbit/s via vestigial-side-band filtering,” Electron. Lett. 39,225–227 (2003)

    Google Scholar 

  107. K. Ennser, M. N. Zervas, and R. I. Laming: “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998)

    ADS  Google Scholar 

  108. H. Chotard, Y. Painchaud, A. Mailloux, M. Morin, F. Trépanier, and M. Guy: “Group delay ripple of cascaded Bragg grating gain flattening filters,” IEEE Photon. Technol. Lett. 14, 1130–1132 (2002)

    ADS  Google Scholar 

  109. D. B. Stegall and T. Erdogan: “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000)

    ADS  Google Scholar 

  110. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti: “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999)

    ADS  Google Scholar 

  111. C. K. Madsen: “Subband all-pass filter architectures with applications to dispersion and dispersion-slope compensation and continuously variable delay lines,” J. Lightwave Technol. 21, 2412–2420 (2003)

    MathSciNet  ADS  Google Scholar 

  112. L. Poladian: “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993)

    ADS  Google Scholar 

  113. L. Poladian: “Understanding profile-induced group-delay ripple in Bragg gratings,” Appl. Opt. 39, 1920–1923 (2000)

    ADS  Google Scholar 

  114. M. Sumetsky, B. J. Eggleton, and C. Martijn de Sterke: “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340, 2002

    ADS  Google Scholar 

  115. R. L. Lachance, M. Morin, and Y. Painchaud: “Group delay ripple in fibre Bragg grating tunable dispersion compensators,” Electron. Lett. 38, 1505–1507 (2002)

    Google Scholar 

  116. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich: “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779 (2003)

    ADS  Google Scholar 

  117. S. G. Evangelides Jr., N. S. Bergano, and C. R. Davidson: “Intersymbol interference induced by delay ripple in fiber Bragg gratings,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’99), San Diego, California, USA, vol. 4, pp. 5–7, FA2 (1999)

    Google Scholar 

  118. T. N. Nielsen, B. J. Eggleton, and T. A. Strasser: “Penalties associated with group delay imperfections for NRZ, RZ and duo-binary encoded optical signals,” Proc. European Conf. Opt. Commun. (ECOC’99), Nice, France, vol. 1, pp. 388–389 (1999)

    Google Scholar 

  119. C. Scheerer, C. Glingener, G. Fischer, M. Bohn, and W. Rosenkranz: “Influence of filter group delay ripples on system performance,” Proc. European Conf. Opt. Commun. (ECOC’99), Nice, France, vol. 1, pp. 410–411 (1999)

    Google Scholar 

  120. C. Riziotis and M. N. Zervas: “Effect of in-band group delay ripple on WDM filter performance,” Proc. European Conf. Opt. Commun. (ECOC’01), Amsterdam, The Netherlands, vol. 4, pp. 492–493, Th.M.1.3 (2001)

    Google Scholar 

  121. K. Hinton: “Metrics for dispersion ripple in optical systems,” Opt. Fib. Technol. 10, 50–72 (2004)

    ADS  Google Scholar 

  122. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming: “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476–1478 (1998)

    ADS  Google Scholar 

  123. D. Penninckx, S. Khalfallah, and P. Brosson: “System impact of phase ripples in optical components,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’01), Anaheim, California, USA, ThB4 (2001)

    Google Scholar 

  124. X. Liu, L. F. Mollenauer, and X. Wei: “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett. 16, 305–307 (2004)

    ADS  Google Scholar 

  125. H. Yoshimi, Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” Proc. European Conf. Opt. Commun. (ECOC’02), Copenhagen, Denmark, vol. 4, 10.4.4 (2002)

    Google Scholar 

  126. N. Cheng, D. J. Krause, and J. C. Cartledge: “Measuring frequency response of dispersion compensating fibre Bragg grating using Fourier coefficients,” Electron. Lett. 41, 402–403 (2005)

    Google Scholar 

  127. M. H. Eiselt, C. B. Clausen, and R. W. Tkach: “Performance characterization of components with group delay fluctuations,” IEEE Photon. Technol. Lett. 15, 1076–1078 (2003)

    ADS  Google Scholar 

  128. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen: “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000)

    ADS  Google Scholar 

  129. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen: “Correction to: Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1591 (2000)

    ADS  Google Scholar 

  130. S. Jamal and J. C. Cartledge: “Variation in the performance of multispan 10-Gb/s systems due to the group delay ripple of dispersion compensating fiber Bragg gratings,” J. Lightwave Technol. 20, 28–35 (2002)

    ADS  Google Scholar 

  131. V. Mizrahi and J. E. Sipe: “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol. 11, 1513–1517 (1993)

    ADS  Google Scholar 

  132. E. Delevaque, S. Boj, J.-F. Bayon, H. Poignant, J. Le Mellot, M. Monerie, P. Niay, and P. Bernage: “Optical fiber design for strong gratings photoimprinting with radiation mode suppression,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’95) PD5 (1995)

    Google Scholar 

  133. F. Bakhti, F. Bruyère, X. Daxhelet, X. Shou, J. Da Loura, S. Lacroix, and P. Sansonetti: “Grating-assisted Mach-Zehnder OADM using photosensitive-cladding fibre for cladding mode coupling reduction,” Electron. Lett. 35, 1013–1014 (1999)

    Google Scholar 

  134. K. Okamoto and H. Yamada: “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20, 43–35 (1995)

    ADS  Google Scholar 

  135. Y. P. Ho, H. Li, and Y. J. Chen: “Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,” IEEE Photon. Technol. Lett. 9, 342–344 (1997)

    ADS  Google Scholar 

  136. C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz, and P. Chou: “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett. 33, 1312–1314 (1997)

    Google Scholar 

  137. A. Rigny, A. Bruno, and H. Sik: “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997)

    Google Scholar 

  138. C. Dragone: “Efficient techniques for widening the passband of a wavelength router,” J. Lightwave Technol. 16, 1895–1906 (1998)

    ADS  Google Scholar 

  139. L. B. Soldano and E. C. M. Pennings: “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995)

    ADS  Google Scholar 

  140. J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, and I. Adesida: “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996)

    ADS  Google Scholar 

  141. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau: “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32, 449–451 (1996)

    Google Scholar 

  142. K. Okamoto and A. Sugita: “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996)

    Google Scholar 

  143. M. E. Marhic and X. Yi: “Calculation of dispersion in arrayed waveguide grating demultiplexers by a shifting-image method,” IEEE J. Select. Topics Quantum Electron. 8, 1149–1157 (2002)

    Google Scholar 

  144. T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino: “Low chromaticdispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39, 1116–1118 (2003)

    Google Scholar 

  145. B. Fondeur, A. L. Sala, H. Yamada, R. Brainard, E. Egan, S. Thedki, N. Gopinathan, D. Nakamoto, and A. Vaidyanathan: “Ultrawide AWG with hyper-Gaussian profile,” IEEE Photon. Technol. Lett. 16, 2628–2630, (2004)

    ADS  Google Scholar 

  146. H. Kogelnik: “Filter response of nonuniform almost-periodic structures,” Bell Syst. Techn. J. 55, 109–126 (1976)

    Google Scholar 

  147. G. Hugh Song: “Theory of symmetry in optical filter responses,” J. Opt. Soc. Am. A. 11, 2027–2037 (1994)

    ADS  Google Scholar 

  148. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming: “Optimised square passband fibre Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–802 (1998)

    Google Scholar 

  149. T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, and H. Suganuma: “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’01), Anaheim, California, USA, WDD84 (2001)

    Google Scholar 

  150. T. Shibata, K. Murashima, K. Hashimoto, M. Shiozaki, T. Iwashima, T. Okuno, A. Inoue, and H. Suganuma: “The novel dispersion reduced fiber Bragg grating suitable for 10 Gb/s DWDM systems,” IEICE Trans. Electron. E85-C, 927–933, (2002)

    Google Scholar 

  151. M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas: “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’00), Baltimore, Maryland, USA, PD21 (2000)

    Google Scholar 

  152. M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas: “High reflectivity linearphase fibre Bragg gratings,” Proc. European Conf. Opt. Commun. (ECOC’00), Munich, Germany, vol. 1, pp. 53–54 (2000)

    Google Scholar 

  153. M. Ibsen, P. Petropoulos, M. N. Zervas, and R. Feced: “Dispersion-free fibre Bragg gratings,” Techn. Digest Opt. Fiber Commun. Conf. (OFC’01), San Diego, California, USA, MC1 (2001)

    Google Scholar 

  154. M. Ibsen, R. Feced, J. A. J. Fells, and W. S. Lee: “40 Gbit/s high performance filtering for DWDM networks employing dispersion-free fibre Bragg gratings,” Proc. European Conf. Opt. Commun. (ECOC’01), Amsterdam, The Netherlands, vol. 4, pp. 594–595, Th.B.2.1 (2001)

    Google Scholar 

  155. R. Feced, M. N. Zervas, and M. A. Muriel: “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999)

    ADS  Google Scholar 

  156. M. Ibsen and R. Feced: “Fiber Bragg gratings for pure dispersion-slope compensation,” Opt. Lett. 28, 980–982 (2003)

    ADS  Google Scholar 

  157. H.-J. Deyerl, C. Peucheret, B. Zsigri, F. Floreani, N. Plougmann, S. J. Hewlett, M. Kristensen, and P. Jeppesen: “A compact low dispersion fiber Bragg grating with high detuning tolerance for advanced modulation formats,” Opt. Commun. 247, 93–100 (2005)

    ADS  Google Scholar 

  158. H. J. Deyerl, N. Plougmann, J. B. Jensen, F. Floreani, H. R. Sørensen, and M. Kristensen: “Fabrication of advanced Bragg gratings with complex apodization profiles by use of the polarization control method,” Appl. Opt. 43, 3513–3522 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peucheret, C. (2006). Phase Characteristics of Optical Filters. In: Venghaus, H. (eds) Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences, vol 123. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31770-8_3

Download citation

Publish with us

Policies and ethics