Skip to main content

Quantum Black Hole Thermodynamics

  • Chapter
Chaos, Nonlinearity, Complexity

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 206))

Abstract

Black hole thermodynamics is reviewed for non-experts, underlining the need to go beyond classical general relativity. The origin of the microcanonical entropy of isolated, non-radiant, non-rotating black holes is traced, within an approach to quantum spacetime geometry known as Loop Quantum Gravity, to the degeneracy of boundary states of an SU(2) Cherns Simons theory. Not only does one retrieve the area law for black hole entropy, an infinite series of finite and unambiguous corrections to the area law are derived in the limit of large horizon area. The inclusion of black hole radiance is shown to lead to additional effects related to the thermal stability of black holes. A universal criterion for such stability is derived, in terms of the mass and the microcanonical entropy discussed earlier. As a byproduct, a universal form for the canonical entropy of black holes is obtained, in terms of the better-understood microcanonical entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chandrasekhar, The Mathematical Theory of Black Holes, Cambridge (1984).

    Google Scholar 

  2. R. Wald, General Relativity, Chicago (1984).

    Google Scholar 

  3. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Spacetime, Cambridge (1973).

    Google Scholar 

  4. R. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago (1992).

    Google Scholar 

  5. A. Ashtekar, Lectures on Non-perturbative Canonical Gravity. World Scientific, Singapore (1991).

    MATH  Google Scholar 

  6. R. Arnowitt, S. Deser and C. W. Misner, in Gravitation: an introduction to current research, ed. L. Witten (Wiley, New York, 1962).

    Google Scholar 

  7. A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 21, R53 (2004).

    Article  MathSciNet  Google Scholar 

  8. A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Adv. Theor. Math. Phys. 4 (2000) 1 and references therein.

    Google Scholar 

  9. J. D. Bekenstein, Phys. Rev. D7 (1973) 2333.

    MathSciNet  Google Scholar 

  10. S. W. Hawking, Phys. Rev. D13 (1976) 191.

    MathSciNet  Google Scholar 

  11. R. Kaul and P. Majumdar, Phys. Lett. B439 (1998) 267.

    MathSciNet  Google Scholar 

  12. R. Kaul and P. Majumdar, Phys. Rev. Lett. 84 (2000) 5255 (grqc/ 0002040).

    Google Scholar 

  13. S. Carlip, Class. Quant. Grav. 7 (2000) 4175.

    Article  MathSciNet  Google Scholar 

  14. R. B. Mann and S. Solodukhin, Phys. Rev. D55, 3622 (1997).

    MathSciNet  Google Scholar 

  15. S. Das, R. K. Kaul and P. Majumdar, Phys. Rev. D 63 (2001) 044019 (hep-th/0006211).

    Google Scholar 

  16. P. Majumdar, Pramana 55 (2000) 511; hep-th/0011284, hep-th/0110198.

    Google Scholar 

  17. S. Das, P. Majumdar and R. Bhaduri, Class. Quant. Grav. 19 (2002) 2355.

    Article  MathSciNet  Google Scholar 

  18. S. W. Hawking and D. N. Page, Commun. Math. Phys. 87 (1983) 577.

    Article  MathSciNet  Google Scholar 

  19. G. Immirzi, Quantum Gravity and Regge Calculus, gr-qc/9701052 and references therein.

    Google Scholar 

  20. J. Bardeen, B. Carter and S. Hawking, Comm. Math. Phys. 31 (1973) 161.

    Article  MathSciNet  Google Scholar 

  21. A. Ashtekar, C. Beetle and S. Fairhurst, Class. Quant. Grav. 17 (2000) 253; A. Ashtekar, C. Beetle and J. Lewandowski, Class. Quant. Grav. 19 (2000) 1195.

    Article  MathSciNet  Google Scholar 

  22. A. Ashtekar, B. Krishnan, Phys. Rev. Lett. 89 (2002) 261101.

    Article  MathSciNet  Google Scholar 

  23. A. Ashtekar, J. Lewandowski, Donald Marolf, J. Mourao, T. Thiemann, J. Math. Phys. 36 (1995) 6456.

    Article  MathSciNet  Google Scholar 

  24. C. Rovelli and L. Smolin, Nucl. Phys. B442 (1995) 593.

    Article  MathSciNet  Google Scholar 

  25. A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 14 (1997) 55.

    Article  MathSciNet  Google Scholar 

  26. M. Banados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849.

    Article  MathSciNet  Google Scholar 

  27. T. R. Govindarajan, R. Kaul and S. Varadarajan, Class. Quant. Grav. 18 (2001) 2877

    Article  Google Scholar 

  28. J. A. Wheeler, It from Bit, in Sakharov Memorial Lectures, Vol. II, Nova (1992).

    Google Scholar 

  29. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026.

    Google Scholar 

  30. S. W. Hawking, Nature 248, 30–31 (1974).

    Article  Google Scholar 

  31. S. W. Hawking, Commu. Math. Phys., 43, 199–222 (1975).

    Article  MathSciNet  Google Scholar 

  32. S. W. Hawking and D. N. Page, Commu. Math. Phys. 87, 577 (1983).

    Article  MathSciNet  Google Scholar 

  33. A. Chatterjee and P. Majumdar, ArXiv:hep-th/0303030.

    Google Scholar 

  34. A. Chatterjee and P. Majumdar, Phys. Rev. Lett. 92, 141301 (2004).

    Article  MathSciNet  Google Scholar 

  35. A. Chatterjee, and P. Majumdar, Pramana, 63, 851–858 (2004).

    Google Scholar 

  36. T. Thiemann, Phys. Lett. B380 257–264 (1996).

    MathSciNet  Google Scholar 

  37. A. Chatterjee and P. Majumdar, Phys. Rev. D 71, 024003 (2005).

    MathSciNet  Google Scholar 

  38. A. Chatterjee and P. Majumdar, Phys. Rev. D 72, 044005 (2005).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Majumdar, P. (2006). Quantum Black Hole Thermodynamics. In: Sengupta, A. (eds) Chaos, Nonlinearity, Complexity. Studies in Fuzziness and Soft Computing, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31757-0_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-31757-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31756-2

  • Online ISBN: 978-3-540-31757-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics