Skip to main content

Non-Boltzmannian Entropies for Complex Classical Systems, Quantum Coherent States and Black Holes

  • Chapter
Chaos, Nonlinearity, Complexity

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 206))

  • 1280 Accesses

Abstract

The Renyi entropy is derived as a cumulant average of the Boltzmann entropy in the same way as the Helmholtz free energy can be obtained by cumulant averaging of a Hamiltonian. Such a form of the information entropy and the principle of entropy maximum (MEP) for it are justified by the Shore–Johnson theorem. The application of MEP to the Renyi entropy gives rise to the Renyi distribution. Thermodynamic entropy in the Renyi thermostatistics increases with system complexity (gain of an order parameter n = 1-q) and reaches its maximal value at q min. The Renyi distribution for such q becomes a pure power–law distribution. Because a power–law distribution is characteristic for self-organizing systems the Renyi entropy can be considered as a potential that drives the system to a self-organized state. The derivative of difference of entropies in the Renyi and Gibbs thermostatistics in respect to n exhibits a jump at n = 0. This permits us to consider the transfer to the Renyi thermostatistics as a peculiar kind of a phase transition into a more organized state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaynes ET (1957) Phys Rev 106:620–630; 108:171–190

    Article  MathSciNet  Google Scholar 

  2. Zubarev DN (1974) Nonequilibrium Statistical Thermodynamics. Consultant Bureau, New York

    Google Scholar 

  3. Zubarev D, Morozov V, Röpke G (2001) Statistical Mechanics of Nonequilibrium Processes. Akademie Verlag, Berlin.

    Google Scholar 

  4. http://astrosun.tn.cornell.edu/sta./loredo/bayes/

  5. Jaynes ET (1983) Probability, Statistics and Statistical Physics. Rosenkrantz (ed), Dordrecht, Reidel

    Google Scholar 

  6. Penrose O (1979) Rep Progr Phys 42:1937–2006

    Article  Google Scholar 

  7. Lavis DA, Milligan PJ (1985) British Journal Philosophy Science 36:193–210

    MathSciNet  Google Scholar 

  8. Buck B, Macaulay VA (1991) Maximum Entropy in Action. Clarendon Press, Oxford

    Google Scholar 

  9. Balian R (1991) From Microphysics to Macrophysics. Springer, Berlin

    Google Scholar 

  10. Denbigh KG, Denbigh JS (1985) Entropy in its relation to incomplete knowledge. Cambridge University Press, Cambridge

    Google Scholar 

  11. Dougherty JP (1993) Stud Hist Philos Mod Phys 24:843–866

    Article  MathSciNet  Google Scholar 

  12. Ufink J (1995) Studies Hist Philos Mod Phys 26B:223–253

    Article  Google Scholar 

  13. Wheeler JA (1990) Information, Physics, Quantum: The Search for Links. In: Zurek WH (ed) Complexity, Entropy and the Physics of Information, SFI Studies in the Sciences of Complexity, vol VIII

    Google Scholar 

  14. Bak P (1996) How nature works: the science of self-organized criticality. Copernicus, New York

    MATH  Google Scholar 

  15. Montroll EW, Shlesinger MF (1983) Journ Stat Phys 32:209–230

    Article  MathSciNet  Google Scholar 

  16. Haken H (1988) Information and Self-Organization. Springer, Berlin

    MATH  Google Scholar 

  17. Nicolis GS (1986) Dynamics of Hierarchial Systems. An Evolutionary Approach Springer, Berlin

    Google Scholar 

  18. Balescu R (1975) Equilibrium and nonequilibrium statistical mechanics. John Wiley and Sons Inc, New York

    MATH  Google Scholar 

  19. Kadomtsev BB (1997) Dynamics and information. Published by Uspechi Fizicheskikh Nauk, Ìoscow (in Russian)

    Google Scholar 

  20. Renyi A (1970) Probability theory. North-Holland, Amsterdam

    Google Scholar 

  21. Selected papers by Alfred Renyi, Vol 2, (1976) Akademiai Kiado, Budapest

    Google Scholar 

  22. Kolmogorov AN (1930) Atti R Accad Naz Lincei 12:388–396

    Google Scholar 

  23. Nagumo M (1930) Japan J Math 7:71–79

    Google Scholar 

  24. Beck C, Schlögl F (1993) Thermodynamics of Chaotic Systems. Cambridge Univ Press, Cambridge

    Google Scholar 

  25. Klimontovich YuL (1994) Statistical Theory of Open Systems. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  26. Aczel J, Daroczy Z (1975) On measures of information and their characterizations. Academic Press, London

    MATH  Google Scholar 

  27. Arimitsu T, Arimitsu N (2002) Physica A 305:218–226

    Article  MathSciNet  Google Scholar 

  28. Maassen H, Uffink JBM (1988) Phys Rev Lett 60:1103–1106

    Article  MathSciNet  Google Scholar 

  29. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Phys Rev A 33:1141–1154

    Article  MathSciNet  Google Scholar 

  30. Jensen MH, Kadano. LP, Libchaber A, Procaccia I, Stavans J (1985) Phys Rev Lett 55:2798–2798

    Article  Google Scholar 

  31. Tomita K, Hata H, Horita T, Mori H, Morita T (1988) Prog Theor Phys 80:963–976

    Article  Google Scholar 

  32. Hentschel HGE, Procaccia I (1983) Physica D 8:435–458

    Article  MathSciNet  Google Scholar 

  33. Tsallis C (1988) J Stat Phys 52:479–487

    Article  MathSciNet  Google Scholar 

  34. http://tsallis.cat.cbrf.br/biblio.htm

  35. Anteneodo C, Tsallis C (2003) J Math Phys 44:5194–5209

    Article  MathSciNet  Google Scholar 

  36. Kaniadakis G Scarfone AM (2004) Physica A 340:102–109

    Article  MathSciNet  Google Scholar 

  37. Souza AMC, Tsallis C (2003) arXiv:cond-mat/0301304

    Google Scholar 

  38. Abe S, Kaniadakis G, Scarfone AM (2004) arXiv:cond-mat/0401290

    Google Scholar 

  39. Johal RS, Tirnakli U (2004) Physica A 331:487–496

    Article  MathSciNet  Google Scholar 

  40. Abe S (2002) Phys Rev E 66:046134

    Article  MathSciNet  Google Scholar 

  41. Leshe B (1982) J Stat Phys 27:419–422

    Article  Google Scholar 

  42. Bashkirov A (2005) Phys Rev E 72:028101; (2004) arXiv:condmat/ 0410667

    Article  MathSciNet  Google Scholar 

  43. Abe S (2005) Phys Rev E 72:028102; (2004) arXiv:cond-mat/0412774

    Article  MathSciNet  Google Scholar 

  44. Isihara A (1971) Statistical Physics. Academic Press, New York

    Google Scholar 

  45. Bashkirov A (2004) Phys Rev Lett 93:13061

    Article  Google Scholar 

  46. Lesche B (2004) Phys Rev E 70:017102

    Article  Google Scholar 

  47. Bashkirov AG (2005) Comments on paper by B.Lesche (Phys.Rev. E 70, 017102 (2004)) “Renyi entropies and observables”. arXiv:condmath/0504103

    Google Scholar 

  48. Shannon CE (1948) Bell Syst Techn Journ 27:379–423; 27:623–656

    MathSciNet  Google Scholar 

  49. Khinchin AI (1953) Uspekhi Mat Nauk 8:3–20; Khinchin AI (1957) Mathematical Foundations of Information Theory. Dover, New York

    Google Scholar 

  50. Abe S (2000) Phys Lett A 271:74–79

    Article  MathSciNet  Google Scholar 

  51. Jizba P, Arimitsu T (2001) AIP Conf Proc 597:341–354; cond- mat/0108184

    Google Scholar 

  52. Shore JE, Johnson RW (1980) IEEE Trans Inform Theory IT-26:26–37

    Article  MathSciNet  Google Scholar 

  53. Johnson RW, Shore JE (1983) IEEE Trans Inform Theory IT-29:942–943

    Article  MathSciNet  Google Scholar 

  54. Bashkirov AG (2004) Physica A 340:153–162

    Article  MathSciNet  Google Scholar 

  55. Bashkirov AG, Vityazev AV (2000) Physica A 277:136–145

    Article  Google Scholar 

  56. Tsallis C, Mendes RS, Plastino AR (1998) Physica A 261:534

    Article  Google Scholar 

  57. Wilk G, Wlodarczyk Z (2000) Phys Rev Lett 84:2770

    Article  Google Scholar 

  58. Bashkirov AG, Sukhanov AD (2002) Zh Eksp Teor Fiz 122:513–520 [(2002) JETP 95:440–446]

    Google Scholar 

  59. Beck C (2001) Phys Rev Lett 87:18601

    MathSciNet  Google Scholar 

  60. Beck C, Cohen EGD (2003) Physica A 322:267–283

    Article  MathSciNet  Google Scholar 

  61. Landau LD, Lifshitz EM (1980) Course of Theoretical Physics, Vol. 5: Statistical Physics. Pergamon, Oxford, Part 2.

    Google Scholar 

  62. de Groot SR, Mazur P (1962) Nonequilibium Thermodynamics. North- Holland, Amsterdam

    Google Scholar 

  63. Chandrasekhar S (1943) Stochastic Problems in Physics and Astronomy. American Inst. of Physics, New York

    Google Scholar 

  64. Akhmanov SA, Dyakov YuE, Chirkin AS (1981) Introduction to Statistical Radio Physics and Optics. Nauka, Moscow (in Russian)

    Google Scholar 

  65. Landau LD, Lifshitz EM (1980) Course of Theoretical Physics, Vol. 5: Statistical Physics. Pergamon, Oxford, Part 1

    Google Scholar 

  66. Landau LD (1937) Zh. Eksp. Teor. Fiz. 7:819–832; Frenkel YaI (1950) Principles of the Nuclear Theory. Akad. Nauk SSSR, Moscow; Weis- skopf V (1947) In Lecture Series in Nuclear Physics. US Govt Print Off, Washington

    Google Scholar 

  67. Wu J, A. Widom A (1998) Phys Rev E 57:5178–5186

    Article  Google Scholar 

  68. Gradstein IS, Ryzhik IM (1994) Tables of Integrals, Summs, Series and Productions. 5th ed Acad Press Inc, New York

    Google Scholar 

  69. Zubarev DN, Morozov VG, Troshkin OV (1992) Theor Math Phys 92:896–908

    Article  MathSciNet  Google Scholar 

  70. Plastino AR, Plastino A (1994) Phys Lett A 193:251–257

    Article  MathSciNet  Google Scholar 

  71. Plastino A, Plastino AR (1999) Brazil Journ Phys 29:50–72

    Google Scholar 

  72. Lyra ML, Tsallis C (1998) Phys Rev Lett 80:53–56

    Article  Google Scholar 

  73. Bashkirov AG, Vityazev AV (1996) Planet Space Sci 44:909–916

    Article  Google Scholar 

  74. Fujiwara A, Kamimoto G, Tsukamoto A (1977) Icarus 31:277–293

    Article  Google Scholar 

  75. Zipf GK (1949) Human behavior and the principle of least efforts. Addison-Wesley, Cambridge

    Google Scholar 

  76. Mandelbrot BB (1963) Journ. Business 36:394–426

    Article  Google Scholar 

  77. Price D (1963) Little Science, Big Science. Columbia Univ, New York

    Google Scholar 

  78. Rybczyski M, Wlodarczyk Z, Wilk G (2001) Nucl Phys B (Proc Suppl) 97:81–95

    Article  Google Scholar 

  79. Adamic LA, Hubermann BA (2002) Glottometrics 3:143–151

    Google Scholar 

  80. Wilk G, Wlodarczyk Z (2004) Acta Phys Polon B 35:871–883; condmat/ 0212056

    Google Scholar 

  81. Peres A (1993) Quantum Theory: Concepts and Methods. Kluwer Academic Publ, Dordrecht

    MATH  Google Scholar 

  82. Zurek WH, Habib S, Paz JP (1993) Phys Rev Lett 70:1187–1190

    Article  Google Scholar 

  83. Tegmark M, Shapiro HS (1994) Phys Rev E 50:2538–2547

    Article  Google Scholar 

  84. Paz JP, Zurek WH (1998) Quantum limit of decoherence: environment induces superselection of energy eigenstates. qu-ph/9811026

    Google Scholar 

  85. Page DN (1993) Phys Rev Lett 71:1291–1294

    Article  MathSciNet  Google Scholar 

  86. Elze H-T (1996) Phys Lett B 369:295–303

    Article  Google Scholar 

  87. Elze H-T (1997) Open quantum systems, entropy and chaos. qu– ph/9710063

    Google Scholar 

  88. Kay BS (1998) Entropy defined, entropy encrease and decoherence understood, and some black-hole puzzles solved. arXiv:hep–th/9802172

    Google Scholar 

  89. Bashkirov AG, Sukhanov AD (2002) Physica A 305:277–281

    Article  Google Scholar 

  90. Messiah A (1961) Quantum Mechanics. vol.1, North-Holland Publ Comp, Amsterdam

    Google Scholar 

  91. Henley EM, Thirring W (1962) Elementary Quantum Field Theory. McGraw–Hill, New York

    MATH  Google Scholar 

  92. Bekenstein JD (1972) Lett Nuovo Cimento 4:737–746

    Google Scholar 

  93. Bekenstein JD (1973) Phys Rev D7:2333–2343

    MathSciNet  Google Scholar 

  94. Hawking SW (1975) Commun Math Phys 43:199–208

    Article  MathSciNet  Google Scholar 

  95. Frolov V, Novikov I (1993) Phys Rev D 48:4545–4553

    Article  MathSciNet  Google Scholar 

  96. Frolov V (1995) Phys Rev Lett 74:3319–3322

    Article  MathSciNet  Google Scholar 

  97. Jacobson T, Marolf D, Rovelli C (2005) Black hole entropy: inside or out? hep–th/0501103

    Google Scholar 

  98. Bekenstein JD (1997) Quantum black holes as atoms. gr–qc/9710076

    Google Scholar 

  99. Hawking SW (1982) Commun Math Phys, 87:395–403

    Article  MathSciNet  Google Scholar 

  100. Ellis J, Mohanty S, Nanopoulos DV (1989) Phys Lett B 221:113–117

    Article  Google Scholar 

  101. Frolov V (1994) arXiv:hep-th/9412211

    Google Scholar 

  102. Wald RM (1999) Class Quant Grav 16A:177–185; gr-qc/9901033

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bashkirov, A. (2006). Non-Boltzmannian Entropies for Complex Classical Systems, Quantum Coherent States and Black Holes. In: Sengupta, A. (eds) Chaos, Nonlinearity, Complexity. Studies in Fuzziness and Soft Computing, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31757-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-31757-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31756-2

  • Online ISBN: 978-3-540-31757-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics