Skip to main content

Chaos, Periodicity and Complexity on Dynamical Systems

  • Chapter
Chaos, Nonlinearity, Complexity

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 206))

  • 1359 Accesses

Abstract

In the setting of discrete dynamical systems (X, f) where X is a compact metric space and f is a continuous self-mapping of X into itself, we introduce two ways of appreciating how complicated the dynamics of such systems is. First through several notions of chaos like Li-Yorke and Devaney chaos, sensitive dependence of initial conditions, transitivity, Lyapunov exponents, and the second through different notions of entropy, mainly the Kolmogorov-Sinai and topological entropies. In particular Kolmogorov-Sinai is introduced in a very general way. Also we review some known relations among these notions of chaos and entropies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, L. (1959) The Entropy of Derived Automorphism. Dokl. Akad. Nauk. SSSR 128, 647–650. (Russian)

    MathSciNet  MATH  Google Scholar 

  2. Abramov, L. and Rokhlin, V.A. (1961) Entropy of a Skew Product of Mappings with Invariant Measure. Vestnik Leningrad. Univ. 17, 5–13. (Russian)

    Google Scholar 

  3. Adler, R. (1963) A Note on the Entropy of Skew Product Transformations. Proc. Amer. Math. Soc. 14, 665–669.

    Article  MathSciNet  MATH  Google Scholar 

  4. Adler R., Konheim A. and McAndrew. (1965) Topological Entropy. Trans. Amer. Math. Soc. 114, 309–319.

    Article  MathSciNet  MATH  Google Scholar 

  5. Alsedà L., Llibre J. and Misiurewicz M. (2000) Combinatorial Dynamics and Entropy in Dimension One, second edition, World Scientific, Singapore.

    MATH  Google Scholar 

  6. Alsedà L., Llibre J. and Misiurewicz M. (1999) Low-dimensional Combinatorial Dynamics. Int. J. Bifurcation and Chaos 9, 1687–1704.

    Article  MATH  Google Scholar 

  7. Alsedá L., Juher D. and Mumbrä P. (2000) On the Minimal Models for Graph Maps. Int. J. Bifurcation and Chaos 13, 1991–1996.

    Google Scholar 

  8. Alsedà L., Kolyada S., Llibre L. and Snoha L. (2003) Axiomatic of the Topological Entropy on the Interval. Aequationes Mat. 65, 113–132.

    MATH  Google Scholar 

  9. Auslander J. and Yorke J. (1980) Interval maps, Factors of Maps and Chaos. Tôhoku Math. J. 32, 117–188.

    MathSciNet  Google Scholar 

  10. Balibrea F. and Linero A. (2001) Periodic Structure of s-permutation Maps. Aequationes Math. 62, 265–279.

    Article  MathSciNet  MATH  Google Scholar 

  11. Balibrea F. and Linero A. (2002) Periodic Structure of s-permutation Maps II. The Case Tn. Aequationes Math. 64, 34–52.

    Article  MathSciNet  MATH  Google Scholar 

  12. Balibrea F. and Linero A. (2003) On the Periodic Structure of Delayed Difierence Equations of the Form xn = f(xn-k). Journal of Difference Equations and Applications 9(3/4), 359–371.

    Article  MathSciNet  MATH  Google Scholar 

  13. Balibrea F. and Smítal J. (1993) A Chaotic Continuous Function Generates all Probability Distributions. J. Math. Anal. Appl. 180, 587–598.

    Article  MathSciNet  MATH  Google Scholar 

  14. Banks J., Brooks J., Cairns G., Davis G. and Stacey P. (1992) On Devaney’s Definition of Chaos. Amer. Math. Monthly 99, 332–334.

    Article  MathSciNet  MATH  Google Scholar 

  15. Belot G. and Earman J. (1997) Chaos Out of Order: Quantum Mechanics, the Correspondence Principle and Chaos. Studies in the History and Philosophy of Modern Physics 28, 147–182.

    Article  MathSciNet  Google Scholar 

  16. Below A. and Losert V. (1984) On Sequences of Density Zero in Ergodic Theory. Contemp. Math. 26, 49–60.

    Google Scholar 

  17. Blanchard F., Glasner E., Kolyada S. and Mass A. (2002) On Li-Yorke Pairs. J. Reine Angew. Math. 547, 51–68.

    MathSciNet  MATH  Google Scholar 

  18. Block L. and Coppel W.A. (1992) Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin.

    Google Scholar 

  19. Bowen R. (1971) Entropy for Group Endomorphisms and Homogeneous Spaces. Trans. Amer. Math. Soc. 153, 401–414; erratum: (1973) Trans. Amer. Math. Soc. 181, 509–510.

    Article  MathSciNet  MATH  Google Scholar 

  20. Blum J.R. and Hanson D.L. (1960) On the Mean Ergodic Theorem for Subsequences. Bull. Amer. Math. Soc. 66, 308–311.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bourgain J. (1988) On the Maximal Ergodic Theorem for certain Subsets of the Integers. Israel J. Math. 61, 39–72.

    MathSciNet  MATH  Google Scholar 

  22. Bourgain J. (1988) On the Maximal Ergodic Theorem on L p for Arithmetic Sets. Israel J. Math. 61, 73–84.

    MathSciNet  MATH  Google Scholar 

  23. Bourgain J. (1988) Almost Sure Convergence and Bounded Entropy. Israel J. Math. 63, 79–97.

    MathSciNet  MATH  Google Scholar 

  24. Cánovas J. (2000) New Results on Entropy, Sequence Entropy and Related Topics Memoir of Ph. Degree, Universidad de Murcia (Spain).

    Google Scholar 

  25. Cournot A. (1838) Recherches sur les Principes Mathematiques de la Théorie des Richesses, Hachette, Paris.

    Google Scholar 

  26. Devaney R.L. (1986) An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Menlo Park.

    MATH  Google Scholar 

  27. Dekking F.M. (1980) Some Examples of Sequence Entropy as an Isomorphism Invariant. Trans. Amer. Mat. Soc. 259, 167–183.

    Article  MathSciNet  MATH  Google Scholar 

  28. Denker M., Grillenberger C. and Sigmund K. (1976) Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, Springer, Berlin.

    Google Scholar 

  29. Ellis M.H. and Friedman N.A. (1978) Subsequence Generators for Ergodic Group Translations. Israel J. Math. 31, 115–121.

    MathSciNet  MATH  Google Scholar 

  30. Frigg R. (2004) In what Sense is the Kolmogorov-Sinai Entropy a Measure for Chaotic Behaviour?. Bridging the Gap between Dynamical Systems Theory and Communication Theory. Brit. J. Phil. Sci. 55, 411–434.

    Article  MathSciNet  MATH  Google Scholar 

  31. García Guirao J.L. and Lampart M. (2005) Li and Yorke Chaos with respect to the Cardinality of the Scrambled Sets. Chaos, Solitons and Fractals. 24, 1203–1206.

    Article  MathSciNet  MATH  Google Scholar 

  32. Goodman T.N. (1974) Topological Sequence Entropy. Proc. London Math. Soc. 29, 331–350.

    MathSciNet  MATH  Google Scholar 

  33. Halmos P.R. (1956) Lectures on Ergodic Theory, The Mathematical Society of Japan, Tokyo.

    MATH  Google Scholar 

  34. Henson S.M., Reilly J.R., Robertson S.L., Schub M.C., Rozier E.W. and Cushing J.M. (2003) Predicting Irregularities in Population Cycles. SIAM J. Applied Systems 2, No2, 238–253.

    Article  MATH  Google Scholar 

  35. Hsu C. and Li M. (2002) Transitivity Implies Period Six: A Simple Proof. Amer. Math. Monthly 109, 840–843.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hulse P. (1982) Sequence Entropy and Subsequence Generators. J. London Math. Soc. 26, 441–450.

    MathSciNet  MATH  Google Scholar 

  37. Huang W. and Ye X. (2002) Devaney’s Chaos or 2-scattering Implies Li-Yorke Chaos. Topol. Appl. 117, 259–272.

    Article  MathSciNet  MATH  Google Scholar 

  38. Katok A. (1980) Lyapunov Exponents, Entropy and Periodic Orbits for Difieomorphisms. Publ. Math. I.H.E.S. 51, 137–173.

    MathSciNet  MATH  Google Scholar 

  39. Kloeden P.E. (1979) On Sharkovsky Cycle Coexistence Orderings. Bull. Austral. Math. Soc. 20, 171–177.

    Article  MathSciNet  MATH  Google Scholar 

  40. Kolyada S. and Snoha L. (1996) Topological Entropy of Nonautonomous Dynamical Systems. Random and Comp. Dynamics 4, 205–233.

    MathSciNet  MATH  Google Scholar 

  41. Krieger W. (1970) On Entropy and Generators of Measure Preserving Transformations. Trans. Amer. Math. Soc. 149, 453–464.

    Article  MathSciNet  MATH  Google Scholar 

  42. Kolmogorov A.N. (1958) A New Metric Invariant of Transient Dynamical Systems and Automorphisms in Lebesgue Spaces. Dokl. Akad. Nauk. SSSR. 119, 861–864. (Russian)

    MathSciNet  MATH  Google Scholar 

  43. Kocic V.L. and Ladas G. (1993) Global Behaviour of Nonlinear Diference Equations of Higher Order with Applications, Mathematics and its Applications, Kluwer Academic Publishers, Netherlands, 256.

    Google Scholar 

  44. Kuchta M. and Smítal J. (1989) Two Points Scrambled Set Implies Chaos. Proc. Europ. Conf. Iteration Theory, Spain 1987 (World Scientific, Singapore), 427–430.

    Google Scholar 

  45. A. G. Kushnirenko A.G., (1967) On Metric Invariants of Entropy Type. Russian Math. Surveys 22, 53–61.

    Article  Google Scholar 

  46. Lemanczycz M. (1985) The Sequence Entropy for Morse Shifts and Some Counterexamples. Studia Mathematica 82, 221–241.

    MathSciNet  Google Scholar 

  47. Levine S.H., Scudo F.M. and Plunkett D.J. (1977) Persistence and Convergence of Ecosystems: an Analysis of some Order Difierence Equations. J. Math. Biol. 4 no 2, 171–182.

    MathSciNet  MATH  Google Scholar 

  48. Llibre J., Paraños J. and Rodríguez J.A. (2002) Periods for Continuous Self Maps of the Figure Eight Space. Int. J. Bifurcation and Chaos 13 No 7, 1743–1754.

    Google Scholar 

  49. Li T.Y. and Yorke J. (1975) Period Three Implies Chaos. Amer. Math. Monthly 82, 985–992.

    Article  MathSciNet  MATH  Google Scholar 

  50. Maynard Smit J. (1968) Mathematical Ideas in Biology, Cambridge University Press.

    Google Scholar 

  51. Milnor J. (2002) Is Entropy Effectively Computable? Stony Brook, preprint.

    Google Scholar 

  52. Misiurewicz M. (1995) Thirty Years after Sharkovsky Theorem. Int. J. Bifurcation and Chaos 5, 1275–1281.

    Article  MathSciNet  MATH  Google Scholar 

  53. Misiurewicz M. and Szlenk W. (1980) Entropy of Piecewise Monotone Mappings. Studia Math. 67, 45–63.

    MathSciNet  MATH  Google Scholar 

  54. Moser J. (1973) Stable and Random Motions in Dynamical Systems Princeton Uni.Press.

    Google Scholar 

  55. Nadler S.B. (1992) Continuum Theory. An Introduction. Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc. New York.

    Google Scholar 

  56. Nagata J. (1965) Modern Dimension Theory, Interscience-Wiley, New York.

    MATH  Google Scholar 

  57. Newton D. (1970) On Sequence Entropy I and II. Math. Systems Theory 4, 119–125.

    Article  Google Scholar 

  58. Ornstein D. (1970) Two Bernuilli Shift with the Same Entropy are Isomorphic. Advances in Math. 4, 337–352.

    Article  MathSciNet  MATH  Google Scholar 

  59. Ornstein D. (1973) An Example of a Kolmogorov Automorphism that is not a Bernouilli Shift. Advances in Math. 10, 49–62.

    Article  MathSciNet  MATH  Google Scholar 

  60. Pickel B.S. (1969) Some Properties of A-entropy. Mat. Zametki 5, 327–334 (Russian).

    MathSciNet  MATH  Google Scholar 

  61. Robinson C. (2001) Dynamical Systems, Stability, Symbolic Dynamics and Chaos, CRC Press, Inc.

    Google Scholar 

  62. Rokhlin V.A. (1959) On the Entropy of a Metric Automorphism. Dokl. Akad. Nauk. SSSR 124 980–983.

    MathSciNet  MATH  Google Scholar 

  63. Rokhlin V.A. (1967) Lectures on Entropy Theory of Transformations with Invariant Measure. Russian Math. Surveys 22, 1–52.

    Article  MATH  Google Scholar 

  64. Saleski A. (1977) Sequence Entropy and Mixing. J. Math. Anal.Appl. 60, 58–66.

    Article  MathSciNet  MATH  Google Scholar 

  65. Sinai Y. (1959) On the Notion of Entropy of a Dynamical System. Dokl. Akad. Nauk. SSSR 124, 768–771. (Russian)

    MathSciNet  MATH  Google Scholar 

  66. Shannon C.E. and Weaver W. (1962) The Mathematical Theory of Communication, University of Illinois Press, Urbana.

    Google Scholar 

  67. Sharkovsky A.N. (1964) Coexistence of Cycles of a Continuous Map of the Line into itself. Ukrain. Math. J. 16, 61–71 (in Russian). (1995) Proceedings of the Conference Thirty Years after Sharkovsky Theorem. New Perspectives. Murcia, 1994. Internat. J. Bifu. Chaos App. Sci. Engrg. 5, 1263–1273.

    Google Scholar 

  68. Smale S. (1965) Difieomorphisms with many Periodic Points. Difierential and Combinatorial Topology, Princeton Univ. Press., 63–80.

    Google Scholar 

  69. Smítal J. (1986) Chaotic Functions with Zero Topological Entropy, Trans, Amer. Math. Soc. 297, 269–282.

    Article  MathSciNet  MATH  Google Scholar 

  70. Schweizer A. and Smítal J. (1994) Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Trans. Amer. Math. Soc. 344, 737–854.

    Article  MathSciNet  MATH  Google Scholar 

  71. Swirszcz G. (1998) On a certain Map of a Triangle. Fundamenta Mathematicae 155, 45–57.

    MathSciNet  MATH  Google Scholar 

  72. Tsallis C., Plastino A.R. and Zheng W.M. (1997) Power-law Sensivity to Initial Conditions- New Entropic Representation. Chaos, Solitons and Fractals 8 No 6, 885–891.

    Article  MathSciNet  MATH  Google Scholar 

  73. Walters P. (1982) An Introduction to Ergodic Theory Springer, Berlin.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Balibrea, F. (2006). Chaos, Periodicity and Complexity on Dynamical Systems. In: Sengupta, A. (eds) Chaos, Nonlinearity, Complexity. Studies in Fuzziness and Soft Computing, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31757-0_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-31757-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31756-2

  • Online ISBN: 978-3-540-31757-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics