Advertisement

Kombinationen von uni- und bipolaren Leistungsbauelementen

Chapter
  • 4.3k Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 7 IGBT

  1. [410]
    Adler, M.S.; Owyank, K.W.; Baliga, B.J.; Kokosa, R.A. The Evolution of Power Device Technology. IEEE Trans. Electron Devices ED-31 (1984), S. 1570–1591CrossRefGoogle Scholar
  2. [411]
    Ajid, J.S.; Baliga, B.J.; et al. Comparison of MOS-Gated Bipolar Transistor Structures. MADEP-EPE 1991 Florenz, S. 0-148–151Google Scholar
  3. [412]
    Auerbach, F.; Bauer, J.G.; Hierholzer, M.; Lorenz, L.; Porst, A.; Rühting, H.; Schilling, O. 6,5 kV IGBT-Modules. Proc. of IPEC 2000, S. 275–279Google Scholar
  4. [413]
    Baba, Y.; Yanagiya, S.; et al. High Voltage Trench Drain LDMOSFET Using SOI Wafer. ISPSD 1994 Davos, S. 183–188Google Scholar
  5. [414]
    Bakran, M.; Eckel, H.G. Einsatz von IGBT in Traktionsstromrichtern. ETG Fachtagung 2002, Bad Nauheim, S. 163–172Google Scholar
  6. [415]
    Baliga, B.J. The Asymmetrical Field Controlled Thyristor. IEEE Trans. Electron Devices (1980), S. 1262–1268Google Scholar
  7. [416]
    Baliga, B.J. Fast Switching Insulated Gate Transistors. IEEE Electron Device Lett., Vol. EDL-4, S. 452–454, 1983CrossRefGoogle Scholar
  8. [417]
    Baliga, B.J. The Pinch Rectifier — A Low-Forward-Drop High-Speed Power Diode. IEEE Electron Device Letters 1984, Vol. 5 No. 6, S. 194–196CrossRefGoogle Scholar
  9. [418]
    Baliga, B. J. Analysis of Insulated Gate Transistor Turn-Off Charecteristics. IEEE Electron Device Lett. Vol. EDL-6, Feb. 1985, S. 74–77CrossRefGoogle Scholar
  10. [419]
    Baliga, B.J. Analysis of a High-Voltage Merged P-I-N Schottky (MPS) Rectifier. IEEE Electron Device Letters 1987, Vol. 8, No. 9, S. 407–409CrossRefGoogle Scholar
  11. [420]
    Baliga, B.J. Evolution of MOS-Bipolar Power Semiconductor Technology. Proc. IEEE, Vol. 1976 (1988), No. 4, S. 409–418CrossRefGoogle Scholar
  12. [421]
    Baliga, B.J.; Adler, M.S.; et al. The Insulated Gate Rectifier: A New Power Switching Device. IEDM Tech. Dig., S. 264–267, 1982Google Scholar
  13. [422]
    Baliga, B.J.; Adler, M.S.; Love, R.P.; Grey, P.V.; Zommer, N.D. The Insulated Gate Transistor: a New Three-Terminal MOS-Controlled Bipolar Power Device. IEEE Trans. Electron Devices (1984), S. 821–828Google Scholar
  14. [423]
    Baliga, B.J.; Adler, M.S.; Gray, V.P.; Love, R.P. Suppressing Latch-up in Insulated Gate Transistors. IEEE Electron Device Lett., Vol. EDL-5, S. 323–325, 1984CrossRefGoogle Scholar
  15. [424]
    Bauer, F. Static and Dynamik Characteristics of High Voltage (3,5 kV) IGBT and MCT Devices. Proc. ISPSD 1992, S. 22–27Google Scholar
  16. [425]
    Bauer, J.G.; Auerbach, F.; Porst, A.; Roth, R.; Ruething, H.; Schilling, O. 6,5 kV-Modules Using IGBTs with Field Stop Technology. Proc. ISPSD 2001, S. 121–124Google Scholar
  17. [426]
    Blaabjerg, F.; et al. Comparison of NPT and PT IGBT-Devices for Hard Switching Applications. IAS 1994, Denver, S. 1168–1173Google Scholar
  18. [427]
    Bursky, D. Vertikal DMOS Boosting Power FETs. Electronic Design 1981, Vol. 29, No. 19, S.36Google Scholar
  19. [428]
    Consoli, A.; Licitra, C.; et al. On the Selection of IGBT Devices in Soft-Switching Applications. EPE 1993, Brighton, S. 337–343Google Scholar
  20. [429]
    Dehmlow, M.; Heumann, K.; et al. Comparison of Semiconductor Device Losses in Hard Switched and Zero Voltage Switched Inverter Systems. EPE 1993, Brighton, S. 419–424Google Scholar
  21. [430]
    Dettmer, H.; et al. A Comparison of the Switching Behavior of IGBT and MCT Power Devices. Proc. ISPSD 1993, S. 55–59Google Scholar
  22. [431]
    Disney, D.R.; Pein, H.B.; et al. A Trench-Gate LIGBT Structure and Two LMCT Structures in SOI Substrates. ISPSD 1994 Davos, S. 405–410Google Scholar
  23. [432]
    Eckel, H.G.; Sack, L. Optimization of the Turn-Off Performance of IGBT at Overcurrent and Short-Circuit Current. EPE 1993 Brighton, S. 3177–322Google Scholar
  24. [433]
    Harada, M.; Minato, T.; et al. 600 V Trench IGBT in Comparison with Planar IGBT — An Evaluation of the Limit of IGBT Performance. ISPSD 1994 Davos, S. 411–418Google Scholar
  25. [434]
    Hefner Jr., A. R.; Blackburn, D. L. Performance Trade-Off for the Insulated Gate Bipolar Transistor: Buffer Layer versus Base Lifetime Reduction. IEEE Power Elec. Spec. Conf. Record, S. 27–38, 1986Google Scholar
  26. [435]
    Herr, E.; et al. Improving the Gate Oxide Integrity of Very High Voltage MCT and IGBT Devices by External Gettering of Metal Impurities. ISPSD 1994 Davos, S. 213–220Google Scholar
  27. [436]
    Heumann, K.; Keller, Ch.; et al. Comparison of Stresses in IGBT Devices Using the Quasi-Resonant Current Mode. MADEP-EPE 1991 Florenz, S. 0-209–214Google Scholar
  28. [437]
    Heumann, K.; Quenum, M. Second Breakdown and Latchup Behaviour of IGBTs. EPE 1993 Brighton, S. 301–305Google Scholar
  29. [438]
    Hierholzer, M.; Brunner, H.; Laska, T.; Porst, A. Characteristics of High Voltage IGBT Modules. Proc. Power Conversion 1995, S. 135–139Google Scholar
  30. [439]
    Hierholzer, M.; Porst, A.; Laska, T.; Brunner, H. Applications and Characteristics of High Voltage IGBT Modules. PCIM 1995 (veröfffentlicht als Sonderdruck und Beilage zum Konferenzband)Google Scholar
  31. [440]
    Hierholzer, M.; Bayerer, R.; Porst, A.; Brunner, H. Improved Characteristics of 3,3 kV IGBT Modules. Proc. PCIM 1997, S. 201–204Google Scholar
  32. [441]
    Hille, F.; Hoffmann, L.; Schulze, H.-J.; Wachutka, G. Carrier Lifetime Characterization Using an Optimized Free Carrier Absorption Technique. Proc. ISPSD 2000, S. 299–302Google Scholar
  33. [442]
    Hobart, K.D.; Kub, F. J.; Dolny, G.; Zafrani, M.; Neilson, J.M.; Gladish, J. Fabrication of a Double-Side IGBT by Very Low Temperature Wafer Bonding. Proc. ISPSD 1999, S. 45–48Google Scholar
  34. [443]
    Huang, Q. MOS-Controlled Diode — A New Class of Fast Switching Low Loss Power Diode. VPEC 1994, S. 97–105Google Scholar
  35. [444]
    Huang, Q. The Trench MOS Thyristor (TMT) — A New MOS Gated Power Device. VPEC 1994, S. 1–25Google Scholar
  36. [445]
    Huang, Q. Recent Developments of Power Semiconductor Devices. VPEC 1995, S. 1–9Google Scholar
  37. [446]
    Huth, S.; Winterheimer, S. The Switching Behaviour of an IGBT in Zero Current Switch. EPE 1993 Brighton, S. 312–316Google Scholar
  38. [447]
    Iwamuro, N.; Baliga, B.J.; et al. Comparison of RBSOA of ESTs with IGBTs and MCTs. ISPSD 1994 Davos, S. 195–200Google Scholar
  39. [448]
    Kapels, H. IGBT-und Diodenstrukturen für moderne Schaltungskonzepte. Dissertation, Universität Bremen, 2002; Fortschrittberichte VDI, Reihe 9, Nr. 353, VDI-Verlag, Düsseldorf 2002Google Scholar
  40. [449]
    Kendle, P.D.; Temple, A.K.; Arthur, S.D. Switching Comparison of Generation 1 and Generation 2 P-MCTs and Ultrafast N-IGBTs. IAS 1993, S. 1286–1292Google Scholar
  41. [450]
    Kim, H.S.; Jin, J.H.; et al. A Novel High Voltage Bipolar Technology Featuring Trench Isolated-Base. ISPSD 1994 Davos, S. 297–304Google Scholar
  42. [451]
    Kim, S. S.; Yun, C. M.; Kwon, Y. D.; Kim, T. H. Characterization of 1200 V PT IGBT Utilizing a SDB Technology. Proc. PCIM, Japan 1998, S. 169–174Google Scholar
  43. [452]
    Kumagai, N.; Yamazaki, T. Injection Controllable Schottky Barrier (ICOS) Rectifier. ISPSD 1993, S. 188–192Google Scholar
  44. [453]
    Laska, T.; et al. A Low Loss/Highly Rugged IGBT-Generation — Based on a Self Aligned Process with Double Implanted n/n +-Emitter. ISPSD 1994, Davos, S. 171–176Google Scholar
  45. [454]
    Laska, T.; Miller, G. A 2000 V Non-Punch-Through IGBT with Dynamic Properties like a 1000 V IGBT. IEDM Tech. Dig., 1990, S. 807–810Google Scholar
  46. [455]
    Laska, T.; Miller, G.; Pfaffenlehner, M.; Türkes, P.; Berger, D.; Gutsmann, B.; Kanschat, P.; Münzer, M. Short Circuit Properties of Trench-/Field-Stop-IGBTs — Design Aspects for a Superior Robustness Proc. ISPSD 2003, S. 152–155Google Scholar
  47. [456]
    Lee, H.P.; et al. The Fast Turn-Off Advanced IGBT, a New Device Concept. ISPSD 1994 Davos, S. 63–66Google Scholar
  48. [457]
    Lefebvre, S.; et al. Turn-Off Analysis of the IGBT Used in ZCS Mode. ISPSD 1994 Davos, S. 99–104Google Scholar
  49. [458]
    Li, H.H.; Trivedi, M.; Shenai, K. Dynamics of IGBT Performance in Hard-and Soft-Switching Converters. IAS 1995 Orlando, S. 997–1005Google Scholar
  50. [459]
    Majumdar, G. Future of Power Semiconductors. Proc. IEEE PESC, Aachen 2004, S. 10–15Google Scholar
  51. [460]
    Metzner, D.; Vogler, Th.; Schröder, D. A Modular Concept for the Circuit Simulation of Bipolar Power Semiconductors. IEE EPE Record, Bd. 2, S. 15–22, 1993. IEEE Transactions on Power Electronics, Vol. 9, Nr. 5, S. 506–513, 1994Google Scholar
  52. [461]
    Miller, G,; Sack, J. A New Concept for a Non-Punch-Through IGBT with MOSFET-like Switching Characteristics. PESC Record 1989, S. 21–25Google Scholar
  53. [462]
    Minato, T.; Takahashi, H. New Power-Element Technology. Mitsubishi Electric Advance, March 2004, S. 24–29Google Scholar
  54. [463]
    Motto, E.R.; Mori, S.; et al. New Process Technologies Improve IGBT Module Efficiency. IAS 1995, S. 991–996Google Scholar
  55. [464]
    Netzel, M.; Herzer, R.; Siemieniec, R.; Schipanski, D. Möglichkeiten der Realisierung und Vorteile eines bidirektional sperrfähigen IGBTs. 25. Kolloquium Halbleiter-Leistungsbauelemente und Materialgüte von Silizium, Freiburg 1996, S. 19/1–5Google Scholar
  56. [465]
    Pathomkasikul, W.; Zinger, D.; Elbuluk, M.E. Comparative Study of IGBTs and MCTs in Resonant D.C. Link Converter. IAS 1993, S. 1293–1296Google Scholar
  57. [466]
    Piconne, D.E. High Power Semiconductor Device and Method of Masking the Same. Patent Pending Docket SPC — 101, S.N. 08/280, 984, 21.7.94Google Scholar
  58. [467]
    Piconne, D.E. MOS Turn Off Thyristor. Patent Pending Docket SPC — 110, 30.10.94Google Scholar
  59. [468]
    Porst, A. Ultimate Limits of an IGBT for High Voltage Applications in Conjunction with a Diode. Proceedings of the 6th ISPSD, Davos, 1994, S. 163–170Google Scholar
  60. [469]
    Porst, A. Ultimate Limits of an IGBT, MCt, and Diodes. ISPSD 1994Google Scholar
  61. [470]
    Rahimo, M.; Kopta, A.; Linder, S. High Voltage IGBTs and Diodes. PCIM Europe, Dec. 2002, S. 20–22Google Scholar
  62. [471]
    Rahino, M.; Kopta, A.; Eicher, S.; Kaminski, N.; Bauer, F.; Schlapbach, U.; Linder, S. Extending the Boundary Limits of High Voltage IGBTs and Diodes to above 8 kV. Proc. ISPSD 2002, S. 41–44Google Scholar
  63. [472]
    Reinmuth, K. A Method for Nondestructive Tests of Bipolar Transistors, IGBTs and MOSFETs. MADEP-EPE 1991 Florenz, S. 0-141–147Google Scholar
  64. [473]
    Rung, R. D. Trench Isolation Prospects in CMOS VLSI. IEEE IEDM Tech. Dig, S. 574–577, 1984Google Scholar
  65. [474]
    Russel, J.P.; Goodman, A.M.; Neilson, J.M. The COMFET — a New Conductance MOS-Gated Device. IEEE Electron Device Lett. (1983), S. 63–65Google Scholar
  66. [475]
    Schlangenotto, H.; Neubrand H. Dynamical Avalanche during Turn-Off of GTO-Thyristors and IGBTs. Arch. Elektrotechnik 72, Febr. 1989, S.113–123Google Scholar
  67. [476]
    Shekar, M.S.; Korec, J.; et al. Trench Gate Emitter Switched Thyristors. Proc. ISPSD 1994, Davos, S. 189–194Google Scholar
  68. [477]
    Takahashi, Y.; et al. 2,5kV 100 A μ-Stack IGBT. Proc. ISPSD 1994, Davos, S. 31–36Google Scholar
  69. [478]
    Takahashi, H.; Aono, S.; Yoshida, E.; Moritani, J.; Hine, S. 600 V CSTBT Having Ultra Low On-State Voltage. Proc. ISPSD, June 2001, S. 445–448Google Scholar
  70. [479]
    Takahashi, H.; Yamamoto, A.; Aono, S.; Minato, T. 1200 V Reverse Conducting IGBT (RC-IGBT). Proc. ISPSD 2004Google Scholar
  71. [480]
    Takahashi, H.; Kaneda, M.; Minato, T. 1200 V Class Reverse Blocking IGBT (RB-IGBT) for AC Matrix Converters. Proc. ISPSD 2004Google Scholar
  72. [481]
    Tanaka, T.; Yasuda, Y.; Ohayashi, M. A New MOS-Gate Bipolar Transistor for Power Switches. IEEE Trans. Electron Devices (1986), S. 2041–2045Google Scholar
  73. [482]
    Taphar, N.; Baliga, B.J. A New IGBT Structure with a Wider Safe Operating Area (SOA). Proc. ISPSD 1994 Davos, S. 177–182Google Scholar
  74. [483]
    Türkes, P.; et al. Critical Switching Condition of a Non-Punch-Through IGBT Investigated by Electrothermal Circuit Simulation. Proc. ISPSD 1994 Davos, S. 51–56Google Scholar
  75. [484]
    Ueda, D.; Takagi, H.; et al. An Ultra Low on Resistance Power MOSFET Fabricated by a Fully Self-Aligned Process. IEEE Trans. on Electron Device, Vol. ED-34 (1987), S. 926–930CrossRefGoogle Scholar
  76. [485]
    Ueda, D.; Takagi, H.; Kano, G. Deep-Trench MOSFET with a R on Area Product of 160 mΩ mm 2. IEEE IEDM Tech. Dig., S. 638–641Google Scholar
  77. [486]
    Vogler, Th.; Schröder, D. Physical Modeling of Power Semiconductors for the CAE-Design of Power Electronic Circuits. Journal on Circuits, Systems and Computers, Vol. 5 (1995, No. 3, S. 411–428CrossRefGoogle Scholar
  78. [487]
    Widjaja, A.; et al. Computer Simulation and Design Optimization of IGBTs in Soft-Switching Converters. Proc. ISPSD 1994 Davos, S. 105–112Google Scholar
  79. [488]
    Yamashita, J.; et al. A Study on the Turn-Off Failure and Inhomogeneous Operation. Proc. ISPSD 1994 Davos, S. 63–68Google Scholar
  80. [489]
    Yilmaz, H.; Benjamin, J.L.; Dyer, R.F.; Li-Shu S. Chen; van Dell, W.R.; Pifer, G.C. Comparison of Punch-Through and Non-Punch-Through IGBT Structures. IEEE Trans. on Ind. Appl. IA-22 (1986), S. 466–470Google Scholar
  81. [490]
    3.3 kV IEGT Module. Toshiba, New Product Guide News, 2003-12Google Scholar

MCT

  1. [491]
    Arthur, S.D.; Temple, V.A.K. Special 1400 V N-MCT Designed for Surge Applications. EPE 1993 Brighton, S. 266–271Google Scholar
  2. [492]
    Baliga, B.J. Evolution of MOS-Bipolar Power Semiconductor Technology. Proc. IEEE, Vol. 1976, No. 4 (1988), S. 409–418CrossRefGoogle Scholar
  3. [493]
    Bauer, F.; et al. Static and Dynamik Characteristics of High Voltage (3,5 kV) IGBT and MCT Devices. Proc. ISPSD 1992, S. 22–27Google Scholar
  4. [494]
    Bauer, F.; Haddon, H.; et al. Optimization of Cathode Structures for Improved Performance of MOS Controlled Thyristors. MADEP-EPE 1991 Florenz, S. 0-270–275Google Scholar
  5. [495]
    Consoli, A. Active Voltage Balancement of Series Connected IGBTs. IAS 1995 Orlando, S. 2752Google Scholar
  6. [496]
    Dallmann, G.; et al. Two-Dimensional Dopant Profile Characterization for MCT and IGBT Structures. ISPSD 1994 Davos, S. 305–308Google Scholar
  7. [497]
    Dettmer, H.; et al. A Comparison of the Switching Behavior of IGBT and MCT Power Devices. Proc. ISPSD 1993, S. 55–59Google Scholar
  8. [498]
    Dettmer, H.; et al. 4,5 kV MCT with Buffer Layer and Anode Short Structure. ISPSD 1994 Davos, S. 13–21Google Scholar
  9. [499]
    Dettmer, H.; Lendenmann, H.; et al. Turn-Off Behaviour of Structured MCT Cells. MADEP-EPE 1991 Florenz, S. 0-258–261Google Scholar
  10. [500]
    Goodfellow, J.K.; Williams, B.W. The Bipolar Transistor and GTO Thyristor in a High Power, High Frequency Cascode Switch Configuration. Proc. PESC’ 88 (Tokyo 1988), Vol. 2, S. 695–702Google Scholar
  11. [501]
    Herr, E.; et al. Improving the Gate Oxide Integrity of Very High Voltage MCT and IGBT Devices by External Gettering of Metal Impurities. ISPSD 1994 Davos, S. 213–220Google Scholar
  12. [502]
    Hudgins, J.L.; Menhart, S.; et al. Temperature Variation Effects on the Switching Characteristics of MOS-Gated Devices. MADEP-EPE 1991 Florenz, S. 0-262–266Google Scholar
  13. [503]
    Juan, C. Operating Characteristics of MCTs in Resonant DC Link Inverters. IAS 1994 Denver, S. 1192–1199Google Scholar
  14. [504]
    Kendle, P.D.; Temple, A.K.; Arthur, S.D. Switching Comparison of Generation 1 and Generation 2 P-MCTs and Ultrafast N-IGBTs. IEDM Tech. Dig., S. 807–810Google Scholar
  15. [505]
    Lendenmann, H.; Fichtner, W. Turn-Off Failure Mechanism in Large (2,2 kV, 20 A) MCT Devices. ISPSD 1994 Davos, S. 207–212Google Scholar
  16. [506]
    Motto, E.R.; Donlon, J.F.; et al. New Processes Technologies Improve IGBT Module Efficiency. IAS 1995 Orlando, S. 991–996Google Scholar
  17. [507]
    Pathomkasikul, W.; Zinger, D.; Elbuluk, M.E. Comparative Study of IGBTs and MCTs in Resonant D.C. Link Converter. IAS 1993, S. 1293–1296Google Scholar
  18. [508]
    Pierce, D.E.; Mehta, H. MOS Turn-Off Thyristor, MTO. Patentanmeldung SPC-110 30.10. 1994 der Silicon Power CorporationGoogle Scholar
  19. [509]
    Protiwa, F.F.; Seekamp, E. Experimental Results Using MCTs in Hard and Soft Switching Modes. EPE 1993 Brighton, S. 350–355Google Scholar
  20. [510]
    Pshaenich, A. The MOS-SCR, a New Thyristor Technology. Motorola Eng. Bull. (1982), ED–103Google Scholar
  21. [511]
    Robinson, F.V.P.; Williams, B.W. Emitter Switching High Power Transistors. Proc. EPE’ 87 (Grenoble 1987), Vol. 1, S. 55–59Google Scholar
  22. [512]
    Stoisek, M.; et al. A large Area MOS-GTO with Wafer-Repair Technique. IEEE IEDM Tech. Dig., S. 666–669, 1987Google Scholar
  23. [513]
    Stoisek, M.; Strack, H. MOS GTO Turn-Off Thyristor with MOS-Controlled Emitter Shorts. IEEE IEDM Tech. Dig., S. 158–161, 1985Google Scholar
  24. [514]
    Temple, V.A.K. MOS-Controlled Thyristor — a New Class of Power Devices. IEEE Trans. Electron Devices (1986), S. 1609–1618Google Scholar
  25. [515]
    Temple, V.A.K. MOS Controlled Thyristor. IEDM Tech. Dig., S. 282–286, 1984Google Scholar

FCTh

  1. [516]
    Grüning, H. Hard Driven Field Controlled Thyristors (FCTh) — a Concept to Overcome the Constraints of Todays Soft Driven Gate Turn-Off Thyristors (GTO). ISPE 1992 Seoul, S. 51–58Google Scholar
  2. [517]
    Grüning, H.; Voboril, J.; Gobrecht, J.; Roggwiler, P.; Abbas, C.C.; Broich, B. Properties of High-Power Field-Controlled Thyristor. Proc. Int. Electron Device Meeting (1986), S. 110–113Google Scholar
  3. [518]
    Grüning, H.; Voboril, J. A New Family of Power Semiconductors with Advanced Circuitry. Proc. PESC’ 88 (Tokyo 1988), Vol. 2, S. 1311–1318Google Scholar
  4. [519]
    Grüning, H.; de Lambilly, H.; Lilja, K. Snubberless Superfast High Power Module Using MOS-Driven Field-Controlled Thyristors. Proc. PESC’ 90 (San Antonio 1990), Vol. 1, S. 412–421Google Scholar
  5. [520]
    Venkataramanan, G.; Mertens, A.; et al. Switching Characteristics of Field Controlled Thyristors. MADEP-EPE 1991 Florenz, S. 0-220–225Google Scholar

SITh

  1. [521]
    Nishizawa, J. High Frequency Base Resistance, Emitter Cut Off and Maximum Power in the Junction Type Transistor. Trans. IECE of Japan 44, No. 5 (May 1961), S. 767–776Google Scholar
  2. [522]
    Terasawa, Y.; Miyata, M.; Murakami, S.; Nagano, T.; Okamura, M. High Power Static Induction Thyristor. Proc. Int. Electron Device Meeting (1979), S. 250–253Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations