Unipolare Bauelemente



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 6 Unipolare Bauelemente

  1. [325]
    Allen, F.G.; Gobeli, G.W. Work Function, Photoelectric Threshold and Surface States of Atomically Clean Silicon. Phys. Rev. 127 (1962), S. 150–158CrossRefGoogle Scholar
  2. [326]
    Anderson, S.J.; Roman W.C.; et al. High Power Schottky Module Design Improves Efficiency and Reliability. MADEP-EPE 1991 Florenz, S. 0-407–411Google Scholar
  3. [327]
    Baliga, B. J. Modern Power Devices. Englewood Cliffs (NJ), Printia Hall, 1987Google Scholar
  4. [328]
    Baliga, B.J.; Adler, M.S.; et al. Optimum Semiconductors for Power Field Effekt Transistors. IEEE Electron Dev. Lett. EDL-2, S. 162–164, July 1981Google Scholar
  5. [329]
    Beneking, H. Feldeffekttransistoren. Springer Verlag, Berlin, 1973Google Scholar
  6. [330]
    Berry, J.P. MOSFET Operation Under Hard Switching Mode: Voltage and Current Gradients Control. MADEP-EPE 1991 Florenz, S. 0-130–134Google Scholar
  7. [331]
    Blackburn, D.L. Failure Mechanism and Nondestructive Testing of Power Bipolar and MOS Gated Transistors. MADEP-EPE 1991 Florenz, S. 0-252–257Google Scholar
  8. [332]
    Castro, M.L.; Ferreira, A.; et al. On the Optimum Switching Operation of Power MOSFETs. MADEP-EPE 1991 Florenz, S. 0-125–129Google Scholar
  9. [333]
    Collins, H.W.; Pelly, B. HEXFET, A New Power Technology, Cuts On-Resistance, Boosts Ratings. Electron. Des. 17 (1979), Nr. 12, S. 36Google Scholar
  10. [334]
    Cooper, J.A.; Nelson, D.F. High Field Drift Velocity of Electrons at the Si-SiO 2 Interface by a Time of Flight Technique. J. Appl. Phys. 54 (1983), S. 1445CrossRefGoogle Scholar
  11. [335]
    Deal, B.E. Standardized Terminology for Oxide Charges Assiociated with Thermally Oxidized Silicon. IEEE Trans. Electron Devices, Vol. ED-27 (1980), S. 606CrossRefGoogle Scholar
  12. [336]
    Declerq, B.J.; Plummer, J.D. Avalanche Breakdown in High Voltage D-MOS Devices IEEE Trans. Electron Devices, Vol. ED-23 (1976), S. 1–6CrossRefGoogle Scholar
  13. [337]
    Frankl, D.R. Some Effects of Material Parameters on the Design of Surface Space-Charge Varactors. Solid-State Electronics, Vol. 2 (1961), No. 1, S. 71–76CrossRefMathSciNetGoogle Scholar
  14. [338]
    Götzberger, A. Die Silizium-Siliziumdioxid-Grenzfläche und ihre Untersuchung mit dem MOS-Verfahren. Arch. elektr. Übertr. 20 (1966), S. 241–253Google Scholar
  15. [339]
    Gray, P.V. The Silicon-Silicon Dioxide System. Proc. IEEE 57 (1969), S. 1543–1551CrossRefGoogle Scholar
  16. [340]
    Grebene, A.B.; Ghandi, S.K. General Theory for Pinched Operation of the Junction-Gate FET. Solid-State Electronics, Vol. 12 (1969), No. 7, S. 573–589CrossRefGoogle Scholar
  17. [341]
    Grosvalet, J.; Motsch, C.; Tribes, R. Etude de phénomènes fondamentaux déterminant les caractéristiques des éléments à effet de champ. Ann. Radioélectricité 17 (1962), S. 265–279Google Scholar
  18. [342]
    Grove, A.S.; Deal, B.E.; Snow, E.H.; Sah, C.T. Investigation of Thermally Oxidized Silicon Surfaces Using Metal-Oxide-Semiconductor Structures. Solid-State Electronics, Vol. 8 (1965), No. 2, S. 145–163CrossRefGoogle Scholar
  19. [343]
    Guidini, R.; Chatroux, D.; et al. Semiconductor Power Devices in Series EPE 1993 Brighton, S. 425–430Google Scholar
  20. [344]
    Hauser, J.R. Characteristics of Junction Field Effect Devices with Small Channel Length-to-Width Ratios. Solid-State Electronics, Vol. 10 (1967), No. 6, S. 577–587CrossRefGoogle Scholar
  21. [345]
    Hofstein, S.R. Stabilization of MOS Devices. Solid-State Electronics, Vol. 10 (1967), No. 7, S. 657–644CrossRefGoogle Scholar
  22. [346]
    Holmes, F.E.; Salama, C.A.T. VMOS — A New MOS Integrated Circuit Technology. Solid-State Electronics, Vol. 17 (1974), No. 8, S. 791–797CrossRefGoogle Scholar
  23. [347]
    Hower, P.L. Power Semiconductor Devices: An Overview. Proceedings of the IEEE, Vol. 76, No. 4, April 1988, S. 335–342CrossRefGoogle Scholar
  24. [348]
    Hu, C.; Chi, M.H.; Patel, V.M. Optimum Design of Power MOSFETs. IEEE Trans. Electron Devices, Vol. ED-31, S. 1693–1700, 1984Google Scholar
  25. [349]
    Ichijo, M.; Shigekane, H.; Kobayashi S. 1200 V Transistor Withstands 750 V DC Short-Circuits Currents. Power Conv. and Int. Motion, Vol. 14, Dec. 1987, S. 13–18Google Scholar
  26. [350]
    Kajiwara, Y.; Higaki, Y.; Kato, M.; Mitsui, S. Analysis of Operation Mechanism of a Static Induction Transistor Using a Cross-Type Model. Trans. IECE of Japan, J63-C, No. 8 (1980), S. 529–536Google Scholar
  27. [351]
    Kassakian, J.; Lau, D. An Analysis and Experimental Verification of Parasitic Oscillation in Paralleled Power MOSFETs. IEEE Trans. Electron Devices ED-31 (1984), S. 959–963CrossRefGoogle Scholar
  28. [352]
    Kennedy, D.P.; O’Brien, R.R. Two-dimensional Mathematical Analysis of a Planar Type Junction Field-Effect Transistor. IBM J. Res. Development 13 (1969), S. 662–674Google Scholar
  29. [353]
    Kennedy, D.P.; O’Brien, R.R. Computer Aided Two-dimensional Analysis of the Junction Field-Effect Transistor. IBM J. Res. Development 14 (1970), S. 95–116CrossRefGoogle Scholar
  30. [354]
    Leedham, R.J.; Mc Mahon, R.A. Design of High Speed Power MOSFET Driver, and Its Use in a Half-Bridge Converter. EPE 1993 Brighton, S. 407–412Google Scholar
  31. [355]
    Lehovec, K.; Slobodskoy, A. Field-Effect Capacitance Analysis of Surface States on Silicon. Phys. Status Solidi 3 (1963), S. 447CrossRefGoogle Scholar
  32. [356]
    Lindner, R. Semiconductor Surface Varactor. Bell Syst. Tech. J. 41 (1962), S. 803Google Scholar
  33. [357]
    Lombardi, C.; Manzini, S. A Physical Based Mobility Model for Numerical Simulation of Nonplanar Devices. IEEE Trans. on CAD, Vol. 17 (1988), No. 11, S. 1164–1171Google Scholar
  34. [358]
    Love, R. P.; Gray, P. V.; Adler M. S. A Large Area Power MOSFET Designed for Low Conduction Losses. Int. Electron Devices Mtg., Abstract 17.4, 1981, S. 418–421Google Scholar
  35. [359]
    Many, A.; Goldstein, Y.; Grover, N.B. Semiconductor Surfaces. North Holland Publ. Comp., Amsterdam, 1965Google Scholar
  36. [360]
    Maksimović, D. A MOS Gate Drive with Resonant Transitions. Proceedings PESC 1991Google Scholar
  37. [361]
    McMurray, W. Optimum Snubbers for Power Semiconductors. IEEE TIA, 1972Google Scholar
  38. [362]
    Nakagawa, A.; Ohashi, H.; Kurata, M.; Yamaguchi, H.; Watanabe, W. Non-Latch-up, 1200 V Bipolar Mode MOSFET with Large SOA. Proc. Int. Electron Device Meeting (1984), S. 860–861Google Scholar
  39. [363]
    Nakagawa, A.; Yamaguchi, H.; Watanabe, W.; Ohashi, H.; Kurata, M. Experimental and Numerical Study of Non-Latch-up Bipolar Mode MOSFET Characteristics. Proc. Int. Electron Device Meeting (1985), S. 150–153Google Scholar
  40. [364]
    Nicollian, E.H.; Brews, J.R. MOS Physics and Technology. John Wiley, New York, 1982Google Scholar
  41. [365]
    Nishizawa, J. High Frequency Base Resistance, Emitter Cut Off and Maximum Power in the Junction Type Transistor. Trans. IECE of Japan 44, No. 5 (May 1961), S. 767–776Google Scholar
  42. [366]
    Nishizawa, J.; Terasaki, T.; Shibata, J. Field-Effect Transistor Versus Analog Transistor (Static Induction Transistor). IEEE Trans. Electron Devices ED-22 (1975), S. 185–197CrossRefGoogle Scholar
  43. [367]
    Nishizawa, J.; Ohmi, T.; Mochida, Y.; Matsuyama, T.; Iida, S. Bipolar Mode Static Induction Transistor. Int. Electron Device Meeting, Technical Digest, (Dec. 1978), S. 676–679.Google Scholar
  44. [368]
    Oxner, E.S. Power FETs and Their Applications. Prentice-Hall, Englewood Cliffs (NJ), 1982Google Scholar
  45. [369]
    Prim, R.C.; Shockley, W. Joining Solutions at the Pinch-Off Point in “Field-Effect” Transistor. IRE Trans. ED (1953), S. 1–14Google Scholar
  46. [370]
    Reinmuth, K.; Amann, H. The Ruggedness of Paralleled Power MOSFETs EPE 1993 Brighton, S. 380–384Google Scholar
  47. [371]
    Sabnis, A.G.; Clemens, J.T. Characterization of the Electron Mobility in the Inverted <100> Si Surface. IEEE Tech. Dig., Int. Electron Dev. Meeting (1979), S. 18Google Scholar
  48. [372]
    Salama, C.A.T. A New Short Channel MOSFET Structure (UMOST). Solid-State Electronics, Vol. 20 (1977), No. 12, S. 1003–1009CrossRefGoogle Scholar
  49. [373]
    Sasaki, H.; Sugano, T. Galvanomagnetic Effects in Silicon Surface Inversion Layers. Jap. J. Appl. Phys. 10 (1971), S. 1016–1027CrossRefGoogle Scholar
  50. [374]
    Sigg, H.I.; Vendelin, G.D.; Cauge, T.P.; Kocsis, I. DMOS Transistor for Microwave Application. IEEE Trans. Electron Devices ED-19 (1970), S. 45–53Google Scholar
  51. [375]
    Sin, J.K.O.; Salama C.A.T.; Hou, L. The SINFET — a Schottky Injection MOS-Gated Power Transistor. IEEE Trans. Electron Devices, Vol. ED-33, Dec. 1986, S. 1940–1947CrossRefGoogle Scholar
  52. [376]
    Sun, S.C.; Plummer, J.D. Modeling of the On-Resistance of LDMOS, VDMOS and VMOS Power Transistors. IEEE Trans. Electron Devices, Vol. ED-27 (1980), S. 356–367CrossRefGoogle Scholar
  53. [377]
    Tarui, Y.; Hayashi, Y.; Sekigawa, T. Diffusion Self-Aligned Enhance-Depletion MOS-IC. Proc. 2nd Conf. Solid State Devices, Suppl. J. Jpn. Soc. Appl. Phys. 40 (1971), S. 193Google Scholar
  54. [378]
    Tatsuta, M.; et al. High Frequency, High Power Static Induction Transistor. IAS 1993, S. 1321–1327Google Scholar
  55. [379]
    Terman, L.M. An Investigation of Surface States at a Silicon/Silicon Dioxyde Interface Employing Metal-Oxide-Silicon Diodes. Solid-State Electronics, Vol. 5 (1962), No. 5, S. 285–299CrossRefGoogle Scholar
  56. [380]
    Tihanyi, J. Smart SIPMOS Technology. Siemens Forschung-und Entwicklungs-Ber., Bd. 17, 1988Google Scholar
  57. [381]
    Vitale, G. Modelling the Avalanche Injection Phenomena in Bipolar Mode Field Effect Transistors. MADEP-EPE 1991 Florenz, S. 0-245–248Google Scholar
  58. [382]
    Weinberg S.H. A Novel Lossless Resonant MOSFET Driver. Proceedings PESC’ 92Google Scholar
  59. [383]
    Wiliams, R.K.; Shekar M.S. The Influence of the N + Source Region on Parasitic PNP Conduction in Integrated N-Channel DMOS. ISPSD 1994 Davos, S. 143–148Google Scholar
  60. [384]
    Yamaguchi, K. Field-Dependent Mobility Model for Two-Dimensional Numerical Analysis of MOSFETs. IEEE Trans. Electron. Devices, Vol. ED-26 (1979), S. 1068CrossRefGoogle Scholar


  1. [385]
    Coe US Patent 4,754,310Google Scholar
  2. [386]
    Deboy, G.; et al. US Patent 6,388,287Google Scholar
  3. [387]
    Deboy, G.; März, M.; Stengl, J.-P.; Strack, H.; Tihanyi, J.; Weber, H. A New Generation of High Voltage MOSFETs Breaks the Limit Line of Silicon. Proc. IEDM 1998, S. 683–685Google Scholar
  4. [388]
    Fujihira, T. Theory of Semiconductor Superjunction Devices. Jpn. J. Appl. Phys., Vol. 36 (1997), S. 6254–6262CrossRefGoogle Scholar
  5. [389]
    Hu, C. A Parametric Study of Power MOSFETs. Proc. of Power Electronics Specialist Conf. 1979, S. 385–395Google Scholar
  6. [390]
    Hu, C. Optimum Doping Profile for Minimum Ohmic Resistance and High Breakdown Voltage. IEEE Trans. on Electr. Dev., Vol. ED-26 (1979), No. 3, S. 243–244Google Scholar
  7. [391]
    Kobayashi, T.; et al. High Voltage Power MOSFETs Almost Reached to the Silicon Limit. Proc. ISPSD 2001, S. 435–438Google Scholar
  8. [392]
    Lu, B.; et al. Performance Evaluation of CoolMOS™ and SiC Diode for Single Phase Power Factor Correction Applications. Proc. APEC 2003, S. 651–657Google Scholar
  9. [393]
    Nitta, T.; Minato, T.; Yano, M.; Uenishi, A.; Harada, M. Experimental Results and Simulation Analysis of 250 V Super Trench Power MOSFET (STM). Proc. ISPSD 2000, S. 77–80Google Scholar
  10. [394]
    Rüb, M.; et al. A Novel Trench Concept for the Fabrication of Compensation Devices. Proc. ISPSD 2003Google Scholar
  11. [395]
    Sze, M.S.; Gibbons, G. Appl. Phys. Lett., Vol. 8 (1966), S. 111CrossRefGoogle Scholar
  12. [396]
    Tihanyi, J. A Qualitative Study of the DC Performance of SIPMOS Transistors. Siemens Forschungs-und Entwicklungs-Ber., Vol. 9 (1980), Nr. 4Google Scholar
  13. [397]
    van Dalen, R.; Rochefort, C.; Hurkx, G. Breaking the Silicon Limit Using Semi-Insulating Resurf Layers. Proc. ISPSD 2001, S. 391–394Google Scholar
  14. [398]
    Zverev, I. Switching Frequency Related Trade Offs in a Hard Switching CCM PFC Boost Converter. Proc. APEC 2003, S. 671–676Google Scholar
  15. [399]
    Datenblatt SPP20N60C3. Infineon Technologies AG, Scholar

Monolithische Bidirektionale Schalter

  1. [400]
    Bauer, J.; Auerbach, F.; Porst, A.; Roth, R.; Ruething, H.; Schilling, O. 6,5 kV-Modules Using IGBTs with Field Stop Technology. Proceedings of the ISPSD’ 01, Osaka, JAPAN (2001), S. 121–124Google Scholar
  2. [401]
    Domeij, M.; Breitholz, B.; Hillkirk, L.; Linnros, J.; Ostling, M. Dynamic Avalanche in 3,3 kV Si Power Diode. IEEE Trans. on Electron Devices Vol. 46 (1999), S. 781–786CrossRefGoogle Scholar
  3. [402]
    Domeij, M.; Breitholz, B.; Lutz, J.; Ostling, M. Dynamic Avalanche in Silicon Power Diodes and Impact Ionization at the nn +-Junction. Solid-State Electronics, Vol. 44 (2000), No. 3, S. 477–485CrossRefGoogle Scholar
  4. [403]
    Heinke, F. Monolithischer Bidirektionaler Schalter für Matrixumrichter. Dissertation, TU-Braunschweig 2001; Fortschritt-Berichte VDI, VDI Verlag, Düsseldorf, 2002, Reihe 21, Nr. 331Google Scholar
  5. [404]
    Heinke, F.; Sittig, R. Monolithic Bidirectional Switch. II. Simulation of Device Characteristics. Solid-State Electronics, Vol. 44 (2000), No. 8, S. 1393–1398CrossRefGoogle Scholar
  6. [405]
    Kuhlmann, U.; Sittig, R. Minimum Lateral Extension of Planar Junction Terminations. Solid-State Electronics, Vol. 43 (1999), No. 11, S. 2005–2010CrossRefGoogle Scholar
  7. [406]
    Oetjen, R.; Jungblut, U.; Kuhlmann, J.; Arkenau, J.; Sittig, R. Current Filamentation in Bipolar Power Devices During Dynamic Avalanche Breakdown. Solid-State Electronics, Vol. 44 (2000), No. 1, S. 117–123CrossRefGoogle Scholar
  8. [407]
    Schultze, H.; Frohnmeyer, F.; Niedernostheide, B.; Simmnacher, B.; Kolbesen, B.; Tütto, P.; Pavelka, T.; Wachutka, G. Analytical Tools for the Characterization of Power Devices. Journal of the Electrochem. Soc., Vol. 147 (2000), S. 3879–3888CrossRefGoogle Scholar
  9. [408]
    Sittig, R. Silizium-Bauelemente nahe den Grenzen der Materialeigenschaften — Bauelemente der Leistungselektronik und ihre Anwendungen. ETG-Fachbericht 88, VDE Verlag (2002), S. 9–18Google Scholar
  10. [409]
    Sittig, R.; Heinke, F. Monolithic Bidirectional Switch. I. Device Concept. Solid-State Electronics Vol. 44 (2000), No. 8, S. 1387–1392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations