Advertisement

Thyristor

Chapter
  • 4.4k Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 4, 5 Thyristor, GTO, GCT

  1. [221]
    ABB Semiconductors AG GTO Databook, Teil 3.Google Scholar
  2. [222]
    ABB Semiconductors AG Datenblatt des GTO 5SGA 30J4502. Google Scholar
  3. [223]
    ABB Semiconductors AG Datenblatt des GTO 5SGT 30J6004. Google Scholar
  4. [224]
    Aliwell, R.W.; Cress, D.E. Development of a Self-protected Light Triggered Thyristor. IEE Colloquium Devices, Drives Circuits and Protection, London, 1994, S. 7/1–7/3Google Scholar
  5. [225]
    Alvarez, S.; Ladoux, P.; Blaquiere, J.M.; Carroll, E.; Streit, P. Characterisation of Low Voltage IGCTs (3.3 kV) by Using an Opposition Method Bench Test. Proc. PCIM 2004, S. 10Google Scholar
  6. [226]
    Apeldoorn, O.; Steimer, P.; Streit, P.; Carroll, E.; Weber, A. High Voltage Dual-Gate Turn-Off Thyristors. Conf. Record of the 36th IEEE IAS Annual Meeting, 2001, Vol. 3, S. 1485–1489CrossRefGoogle Scholar
  7. [227]
    Apeldoorn, O.; et al. The Integrated-Gate Dual Transistor (IGDT). PCIM Nürnberg, 2002, S. 1–6Google Scholar
  8. [228]
    Arnould, J.; Lafore, D. Low Switching Loss for Electrode GTO Thyristors. EPE, 1993, Brighton, S. 278–282Google Scholar
  9. [229]
    Azuma, M.; Kurata, M. GTO Thyristors. Proceedings of the IEEE, Vol. 76, No. 4, April 1988, S. 419–427CrossRefGoogle Scholar
  10. [230]
    Beringer, C.; Hengsberger, J.; Thiele, G. HGÜ-Ventilentwicklung. etz Elektrotechnische Zeitschrift, 102 (1981) H. 25, S. 1338–1342Google Scholar
  11. [231]
    Bernet, S.; Teichmann, R.; Zuckerberger, A.; Steimer, P. Comparison of High Power IGBTs and Hard Driven GTOs for High Power Inverters. Conf. Rec. IEEE APEC, 1998, S. 711–718Google Scholar
  12. [232]
    Bernet, S.; et al. Evaluation of a High Power ARCP Voltage Source Inverter with IGCTs. Proc. IEEE IAS, Phoenix (USA), 1999, Paper 24.1Google Scholar
  13. [233]
    Bernet, S.; Apeldoorn, O.; Steimer, P. Technologische Entwicklungen und Applikationen von IGCTs. Konferenzband der ETG Fachtagung „Leistungshalbleiter und ihre Anwendungen“, Bad Nauheim 2002, S. 143–154Google Scholar
  14. [234]
    Boeck, R.; Gaupp, O.; Dähler, P.; Bärlocher, E.; Werninger, J.; Zanini, P. Bremen’s 100 MW Static Frequency Intertie. ABB Review, Vol. 6 (1996)Google Scholar
  15. [235]
    Bösterling, W.; Rüther, K.-A. Asymmetrisch sperrende Thyristoren für die Leistungselektronik. ETZ 106 (1985), S. 362–266Google Scholar
  16. [236]
    Boss, P. Dynamische Probleme der Thyristortechnik. VDE-Tagung Aachen 1971, S. 251–261Google Scholar
  17. [237]
    Carroll, E.I.; et al. Oscillographic Energy-Per-Event Measurement Techniques For Power Semiconductors. Proc. of the Power Conversion Conference PCIM, Long Beach, California, Oct. 1989Google Scholar
  18. [238]
    Carroll, E. IGCT: The First Four Years. Proc. IPEE 2000, BeijingGoogle Scholar
  19. [239]
    De Bruyne, P.; Vitins, J.; Sittig, R. Reverse Conducting Thyristors. in [34], S. 151–173Google Scholar
  20. [240]
    Eicher, S.; Bernet, S.; Steimer, A.; Weber, A. The 10 kV IGCT — A New Device for Medium Voltage Drives. IEEE IAS 2000, Rom, ItalienGoogle Scholar
  21. [241]
    Fischer, F. Neue rückwärtsleitende Thyristormodule — Aufbau und Anwendungen. BBC Nachrichten 64 (1982), S. 334–340Google Scholar
  22. [242]
    Fister, V.; et al. Bahnstromrichter Karlsfeld der Bayernwerke AG. Elektrische Bahnen, Jg. 95 (1997), H. 11, S. 297–303Google Scholar
  23. [243]
    Gerlach, W. Thyristoren. Springer Verlag, Berlin, 1979Google Scholar
  24. [244]
    Gerlach, W. Thyristor mit Querfeldemitter. Zeitschr. angew. Physik, Bd. 19 (1975), S. 396–400Google Scholar
  25. [245]
    Grüning, H. E. Application Specific High Power IGCT-Converters. PCIM Nürnberg, 1999, S. 639–644Google Scholar
  26. [246]
    Grüning, H.; et al. Gate Commutated Thyristors (GCT) hoher Leistung — Technologie und Elementeigenschaften. ETG Fachtagung „Leistungshalbleiter und ihre Anwendungen“, Bad Nauheim 2002, S. 55–64Google Scholar
  27. [247]
    Grüning, H.; Zuckerberger, A. Hard Drive of High Power GTOs — Better Switching Capability Obtained Through Improved Gate-Units. Proceedings of IEEE Industry Applications Conference IAS, 1996, Vol. 3, S. 1474–1480Google Scholar
  28. [248]
    Grüning, H.; Lendenmann, H.; Schröder, D.; Steimer, P. State-of-the-Art Verification of the Hard Driven GTO-Inverter Development for the 91 MVA Intertie in Bremen. Proceedings of PESC, Baveno, Italien, 1996Google Scholar
  29. [249]
    Grüning, H.; et al. High-Power Hard-Driven GTO Module for 4,5 kV, 3 kA Snubberless Operation. Conference Records of PCIM 1996, S. 169–183.Google Scholar
  30. [250]
    Grüning, H.; et al. Hard Drive of High-Power GTOs: Better Switching Capability Obtained Through Improved Gate-Units. Conference Record of the 31st IEEE Industry Applications Conference, Vol. 3, S. 1474–1480, San Diego, USA, 1996Google Scholar
  31. [251]
    Grüning, H. Der GCT (Gate Commutated Thyristor) — Stärken von GTO-und IGBT-Technologie in einer Einheit. Elektrotechnische Gesellschaft im VDE, ETG, Fachtagung Bauelemente der Leistungselektronik und ihre Anwendungen (ETG-FB 72), Bad Nauheim, 1998Google Scholar
  32. [252]
    Grüning, H.; Tsuchiya, T.; Satoh, K.; Yamaguchi, Y.; Mizohata, F.; Takao, K. 6 kV 5 kA RCGCT with Advanced Gate Drive Unit. Proc. of the 13th Internat. Symposion on Power Semiconductor Devices and ICs, ISPSD 2001, S. 133–136Google Scholar
  33. [253]
    Grüning, H.; Koyanagi, K. A New Compact High dI/dt Gate Drive Unit for 6-Inch GCTs. Proc. ISPSD, Kitakyushu, 2004Google Scholar
  34. [254]
    Grüning, H.; Ødegard, B. High Performance Low Cost MVA Inverters Realized with Integrated Gate Commutated Thyristors (IGCT). Proc. EPE 1997, Trondheim (Norway)Google Scholar
  35. [255]
    Harding, O.L.; Tayler, P.D.; Frith, P.J. Recent Advances in High Voltage Thyristor Design. Fourth International Conference on AC and DC Power Transmission, London, 1985, S. 315–319Google Scholar
  36. [256]
    Heumann, K. Evaluation of Turn-Off Semiconductor Devices and Future Trends. ISPE 1992 Seoul, S. 36–45Google Scholar
  37. [257]
    Heumann, K.; Stumpe, A.C. Thyristoren. Teubner Verlag, Stuttgart, 1970Google Scholar
  38. [258]
    Hoffmann, A.; Stocker, K. Thyristor-Handbuch. Siemens AG, Berlin, München, 1976Google Scholar
  39. [259]
    Huang, A.Q.; Motto, K.; Li, Y. Development and Comparison of High-Power Semiconductor Switches. 3rd International Power Electronics and Motion Control Conference, PIEMC 2000, Proc. Vol. 1, S. 70–78.Google Scholar
  40. [260]
    Hudgins, L.; et al. Temperature Effects on GTO Characteristics. IAS 1994 Denver, S. 1182–1187Google Scholar
  41. [261]
    Hughes, K.B.; et al. Effect of Snubber Circuit Parameters on the Turn-Off Voltage Spike of Large GTO Thyristors. IAS 1993, S. 1280–1286Google Scholar
  42. [262]
    Ishido, M.; Debled, G.; et al. Analysis of Series Connection of GTO Thyristors. MADEP-EPE 1991, Florenz, S. 0-374–379Google Scholar
  43. [263]
    Iwamoto, H.; et al. 12 kV, 1 kA Thyristor. Proceedings of IPEC, Tokyo 1990, Vol. 2, S. 1201–1206Google Scholar
  44. [264]
    Jaecklin, A. Performance Limitations of a GTO with Near-Perfect Technology. IEEE Trans. on Electron Devices, Vol. 39, No. 6, June 1992, S. 1507–1513CrossRefGoogle Scholar
  45. [265]
    Johnson, C.M.; et al. Correlation Between Local Segment Characteristics and Dynamic Current Redistribution in GTO Power Thyristors. EEE Transactions on Electron Devices Vol. 41 (1994) No. 5, S. 793–799CrossRefGoogle Scholar
  46. [266]
    Kabaza, H.; Schulze H.-J. Cosmic Radiation as a Cause for Power Device Failure and Possible Counter-measures. ISPSD 1994, Davos, S. 9–12Google Scholar
  47. [267]
    Kegura, M.; Akiyama, H. 8000 V 1000 A GTO with Low On State Voltage and Low Switching Loss. IEEE Trans. on Power Electronics, Vol. ED-40, S. 628–633, 1993Google Scholar
  48. [268]
    Kitagawa, M., Nakagawa, A.; et al. 4500 V IEGTs Having Switchng Characteristics Superior to GTO. Proceedings of the IEEE International Symposium on Power Semiconductor Devices and ICs, ISPSD 1995, S. 486–491Google Scholar
  49. [269]
    Krausse, J. Auger-Rekombination im Mittelgebiet durch Lastbelasteten Silizium Gleichrichter und Thyristor. Solid-State Electronics, Vol. 17 (1974), No. 5, S. 427–429CrossRefGoogle Scholar
  50. [270]
    Kurata, M.; et al. Gate Turn-Off Thyristors. in [34] S. 91–119Google Scholar
  51. [271]
    Kurata, M. A New CAD-Model of a Gate Turn-Off-Thyristor. IEEE Power Electronics Specialist Conference Record, S. 125–133, 1974Google Scholar
  52. [272]
    Li, Y.; Huang, A.Q.; Motto, K. Experimental and Numerical Study of the Emitter Turn-Off Thyristor (ETO). IEEE Trans. on Power Electronics, Vol. 15 (2000), No. 3, S. 561–574CrossRefGoogle Scholar
  53. [273]
    Li, Y.; Huang, A.Q.; Motto, K. Series and Parallel Operation of the Emitter Turn-Off (ETO) Thyristor. IEEE Trans. on Industry Applications, Vol. 38 (2002), No. 3, S. 706–712CrossRefGoogle Scholar
  54. [274]
    Li, Y.; Huang, A.Q.; Motto, K. Analysis of the Snubberless Operation of the Emitter Turn-Off Thyristor (ETO). IEEE Trans. on Power Electronics, Vol. 158 (2003), No. 1, S. 30–37Google Scholar
  55. [275]
    Lyons, J.P.; Vlatkovic, V.; Espelage, P.M.; Boettner, F.H.; Larsen, E. Innovation IGCT Main Drives. Proc. IEEE IAS, Phoenix (USA), 1999Google Scholar
  56. [276]
    Matsuda, H.; Fujiwara, T.; et al. Analysis of GTO Failure Mode During DC Voltage Blocking. ISPSD 1994 Davos, S. 221–226Google Scholar
  57. [277]
    Matsuo, H.; Iida, K.; et al. A New Gate Drive Circuit with Energy-Storage Reactor Developed for High Power GTO Thyristors. MADEP-EPE 1991, Florenz, S. 0-380–385Google Scholar
  58. [278]
    Mitlehner, H.; Pfirsch, F.; Schulze, H.-J. A Novel 8 kV Light-triggered Thyristor with Overvoltage Protection. Proceedings of IPEC, Tokyo 1990, Vol. 2, S. 1207–1212Google Scholar
  59. [279]
    Mitlehner, H., Schulze, H.-J. Current Developments in High-Power Thyristors. EPE Journal, Vol.4, No. 1, 1994, S. 36–42Google Scholar
  60. [280]
    Motto, K.; Li, Y.; Huang, A.Q. Comparison of the State-of-the-Art High Power IGBTs, GCTs, and ETOs. 15th Annual IEEE Applied Power Electronics Conference, APEC 2000, Proc. Vol. 2, S. 1129–1136Google Scholar
  61. [281]
    Nakagawa T.; et al. A New Low Loss High Power GTO with Low Snubber Capacity. Proc. IAS 1993, S. 1299–1304Google Scholar
  62. [282]
    New, T.C.; Frobenius, W.D.; Desmond, T.J.; Hamilton, D.R. High Power Gate-Controlled Switch. IEEE Trans. Electron Devices, Vol. ED-17 (1970), S. 706–710CrossRefGoogle Scholar
  63. [283]
    Niedernostheide, F.-J.; Schulze, H.-J.; Kellner-Werdehausen, U. Self-Protection Functions in Direct Light-Triggered High-Power Thyristors. Microelectronics Journal. Vol. 32, No. 5/6 (May/June 2001), S. 457–461CrossRefGoogle Scholar
  64. [284]
    Niedernostheide, F.-J.; Schulze, H.-J.; Kellner-Werdehausen, U. Self-Protected High-Power Thyristors. Proc. PCIM, 2001, Power Conversion, Nürnberg, Juni 2001, S. 51–56Google Scholar
  65. [285]
    Ødegard, B.; et al. An Application-Specific Asymmetric IGCT. Proc. PCIM, USA 2001Google Scholar
  66. [286]
    Ogura, T.; et al. 6000 V Gate Turn-Off Thyristors with n-Buffer and New Anode Short Structure. IEEE Trans. Electron Devices, Vol. ED-38, S. 1491–1495, 1991CrossRefGoogle Scholar
  67. [287]
    Ogura, T.; et al. High Frequency 6000 V Double-Gate GTOs. IEEE Trans. Electron Devices, Vol. ED-38, S. 1605–1611, 1991Google Scholar
  68. [288]
    Pfirsch, F. Patent DE4215378-C1Google Scholar
  69. [289]
    Ruff, M.; Schulze, H.-J.; Kellner, U. Progress in the Development of an 8 kV Light-Triggered Thyristor with Integrated Protection Functions. IEEE ED, Vol. 46, No. 8, Aug. 1999, S. 1768–1774Google Scholar
  70. [290]
    Sanchez, J.L.; Berriane, R.; et al. Functional Integration of MOS and Thyristor Devices: A Useful Concept to Create New Light Triggered Integrated Switches for Power Conversion. EPE 1993 Brighton, S. 5–9Google Scholar
  71. [291]
    Satoh, K.; Nakagawa, T.; Yamamoto, M.; Morishita, K.; Kawakami, A. 6 kV/4 kA Gate Commutated Turn-Off Thyristor with Operation DC Voltage of 3.6 kV. Proc. of the 10th International Symposion on Power Semiconductor Devices and ICs, ISPSD, June 1998, S. 205–208Google Scholar
  72. [292]
    Satoh, K.; Morishita, K.; Hirano, N.; Yamamoto, M.; Kawakami, A. New Design Approach for Ultra High Power GCT Thyristor. Proc. of the 11th International Symposion on Power Semiconductor Devices and ICs, ISPSD, May 1999, S. 351–354Google Scholar
  73. [293]
    Schlangenotto, H.; Neubrand, H. Dynamical Avalanche during Turn-Off of GTO-Thyristors and IGBTs. Arch. Elektrotechnik 72, Febr. 1989, S. 113–123CrossRefGoogle Scholar
  74. [294]
    Schulze, H.-J.; Mitlehner, H. Improved Blocking Voltage of Power Thyristors by Local Variation of the Current Gain. MADEP-EPE 1991 Florenz 0-393-395Google Scholar
  75. [295]
    Schulze, H.-J., Niedernostheide, F.-J.; Kellner-Werdehausen, U.; Dorn, J. Thyristoren mit integrierten Schutz-und Ansteuerfunktionen. ETG-Fachbericht 88, Bauelemente der Leistungselektronik und ihre Anwendungen, VDE-Verlag, Berlin 2002, S. 47–53Google Scholar
  76. [296]
    Schulze, H.-J.; Niedernostheide, F.-J.; Kellner-Werdehausen, U. Thyristor with Integrated Forward Recovery Protection. Proc. of 2001 International Symposium on Power Semiconductor Devices & ICs, Osaka, May 2001, S. 199–202Google Scholar
  77. [297]
    Schulze, H.-J.; Niedernostheide, F.-J.; Kellner-Werdehausen, U., Przybilla, J.; Uder, M. High-voltage Thyristors for HVDC and Other Applications: Light-triggering Combined with Self-Protection Functions. Proceedings of the International Conference POWER ELECTRONICS, Shanghai, China, Mai 2003, S. 47–52Google Scholar
  78. [298]
    Schulze, H.-J.; Mitlehner, H. Improved Blocking Voltage of Power Thyristors by Local Variation of the Current Gain. EPE-MADEP, Florenz, 1991, 0-393-395Google Scholar
  79. [299]
    Schwarzbauer, H.; Kuhnert, R. Novel Large Area Joining Technique for Improved Power Device Performance. IEEE Trans. on Industry Devices. Vol. 27, No. 1, Jan./Feb. 1991, S. 93–95CrossRefGoogle Scholar
  80. [300]
    Siemens-PTD-Bericht für die Fachpressehttp://www.siemens.com/page/1,3771,253898-0-12_0_11063-0,00.html, Sept. 2001Google Scholar
  81. [301]
    Steimer, P.K.; et al. IGCT — eine neue, zukunftsweisende Technik für kostengünstige Hochleistungs-Umrichter. ABB Technik, 1998, H. 5Google Scholar
  82. [302]
    Steimer, P.K.; Steinke, J.K.; Grüning, H. A Reliable, Interface Friendly Medium Voltage Drive Based on the Robust IGCT and DCT Technologies. Proc. IEEE IAS, Phoenix (USA), 1999, S. 1505–1512Google Scholar
  83. [303]
    Steimer, P.K.; Grüning, H.; Werninger, J. The IGCT — The Key Technology for Low Cost, High Reliable High Power Converters with Series Connected Turn-Off Devices. Proc. EPE, Trondheim, Norway 1997Google Scholar
  84. [304]
    Steimer, P.K.; Grüning, H.; Werninger, J.; Carroll, E.; Klaka, S.; Linder, S. IGCT — A New Emerging Technology for High Power, Low Cost Inverters. Proc. IEEE IAS 1997, New Orleans, S. 1592–1599Google Scholar
  85. [305]
    Stiasny, Th.; Ødegard, B.; Carroll, E. Lifetime Engineering for the Next Generation of Application-Specific IGCTs. Control & Drives, London, March 2001Google Scholar
  86. [306]
    Stiasny, Th.; Streit, P.; Lüscher, M.; Frecker, M. Large Area IGCTs with Improved SOA. Proc. PCIM 2004, S. 3a–5Google Scholar
  87. [307]
    Stockmeier, T.; Haddon, T.H. The SIPOS Si-Interface — A Critical Issue for Power Device Passivation. MADEP-EPE 1991, Florenz, S. 0-039–043Google Scholar
  88. [308]
    Suzuki, T.; Ugazin, T.; Kekura, M.; Watanabe, T.; Sueoka, T. Switching Characteristics of High Power Buried Gate Turn-Off Thyristor. IEDM Tech. Dig., S. 492–495, 1982Google Scholar
  89. [309]
    Takahashi, Y.; Watanabe, M.; et al. 6 kV 3000 A High Power Reverse Conduction GTO Thyristor. MADEP-EPE 1991, Florenz, S. 0-369–373Google Scholar
  90. [310]
    Taylor, P.D. Thyristor Design and Realization. John Wiley & Sons, Chichester, 1987Google Scholar
  91. [311]
    Tower, M.S.; Mawby, P. Self Protected Light Triggered Thyristors. IEE Colloquium Recent Advances in Power Devices, London, 1999, S. 8/1–8/10Google Scholar
  92. [312]
    Tschirley, S.; Bernet, S.; Carroll, E.; Streit, P.; Steimer, P. Design and Characteristics of Low On-State Voltage and Fast Switching 10 kV IGCTs. Proc. PCIM 2004, S. 11Google Scholar
  93. [313]
    van Ligten, R.H.; Navon, D. Base Turn-Off of p-n-p-n Switches. IRE WESCON Convention Record, Part 3 on Electron Devices, 1960, S. 49–52Google Scholar
  94. [314]
    Vitins, J.; Steiner, J.L. New Manufactoring Technology for High Voltage Thyristors. IEEE Ind. Appl. Soc. Mtg. Conf. Rec., 1987, S. 531–536Google Scholar
  95. [315]
    Wirth, F.W. High-Speed Snubberless Operation of GTOs Using a New Gate Drive Technique. IEEE-IAS Conf. Recordings, 1986, S. 453–457Google Scholar
  96. [316]
    Wirth, F.W. High-Speed Snubberless Operation of GTOs Using a New Gate Drive Technique. IEEE Trans. on Industry Applications, Vol. 24 (1988), No. 1, S. 127–131CrossRefGoogle Scholar
  97. [317]
    Wolley, E.D. Gate Turn-Off in p-n-p-n Devices. IEEE Trans. Electron Devices, Vol. ED-13, S. 590–597, 1966CrossRefGoogle Scholar
  98. [318]
    Yamaguchi, M.; Ogura, T.; et al. Mode-Transition Optimized 4,5 kV IGTT (IGBT Mode Turn-Off Thyristor). Proceedings of the IEEE International Symposium on Power Semiconductor Devices and ICs, ISPSD 1996, S. 257–260Google Scholar
  99. [319]
    Yamaguchi, Y.; Oota, K.; Kurachi, K.; Tokunoh, F.; Yamaguchi, H.; Iwamoto, H.; Donlon, J.; Motto, E. A 6 kV/5 kA Reverse Conducting GCT. Proc. IEEE IAS 2001, S. 1497–1503Google Scholar
  100. [320]
    Yatsuo, T.; Satou, Y.; et al. Electrical Characteristics of PNIPN GTO. MADEP-EPE 1991, Florenz, S. 0-352–356Google Scholar
  101. [321]
    Yatsuo, T.; Nagano, T.; Fukui, H.; Okamura, M.; Sakurada, S. Ultrahigh-Voltage High-Current Gate Turn-Off Thyristors. IEEE Trans. Electron Devices, Vol. ED-31 (1984), S. 1681–1686CrossRefGoogle Scholar
  102. [322]
    Zargari, N.R.; et al. A New Current-Source Converter Using a Symmetric Gate-Commutated Thyristor (SGCT). IEEE Trans. on Industry Applications, Vol. 37 (2001), No. 3Google Scholar
  103. [323]
    Zargari, N.R.; et al. A New Current-Source Converter Using a Symmetric Gate-Commutated Thyristor (SGCT). IEEE IAS, Rome 2000, Vol. 3, S. 1957–1963Google Scholar
  104. [324]
    Zeller, H.R. Cosmic Ray Induced Breakdown in High Voltage Semiconductor Devices Microscopic Model and Phenomenological Lifetime Prediction. ISPSD 1994, Davos, S. 339–342Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations