Skip to main content
  • 5730 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 4, 5 Thyristor, GTO, GCT

  1. ABB Semiconductors AG GTO Databook, Teil 3.

    Google Scholar 

  2. ABB Semiconductors AG Datenblatt des GTO 5SGA 30J4502.

    Google Scholar 

  3. ABB Semiconductors AG Datenblatt des GTO 5SGT 30J6004.

    Google Scholar 

  4. Aliwell, R.W.; Cress, D.E. Development of a Self-protected Light Triggered Thyristor. IEE Colloquium Devices, Drives Circuits and Protection, London, 1994, S. 7/1–7/3

    Google Scholar 

  5. Alvarez, S.; Ladoux, P.; Blaquiere, J.M.; Carroll, E.; Streit, P. Characterisation of Low Voltage IGCTs (3.3 kV) by Using an Opposition Method Bench Test. Proc. PCIM 2004, S. 10

    Google Scholar 

  6. Apeldoorn, O.; Steimer, P.; Streit, P.; Carroll, E.; Weber, A. High Voltage Dual-Gate Turn-Off Thyristors. Conf. Record of the 36th IEEE IAS Annual Meeting, 2001, Vol. 3, S. 1485–1489

    Article  Google Scholar 

  7. Apeldoorn, O.; et al. The Integrated-Gate Dual Transistor (IGDT). PCIM Nürnberg, 2002, S. 1–6

    Google Scholar 

  8. Arnould, J.; Lafore, D. Low Switching Loss for Electrode GTO Thyristors. EPE, 1993, Brighton, S. 278–282

    Google Scholar 

  9. Azuma, M.; Kurata, M. GTO Thyristors. Proceedings of the IEEE, Vol. 76, No. 4, April 1988, S. 419–427

    Article  Google Scholar 

  10. Beringer, C.; Hengsberger, J.; Thiele, G. HGÜ-Ventilentwicklung. etz Elektrotechnische Zeitschrift, 102 (1981) H. 25, S. 1338–1342

    Google Scholar 

  11. Bernet, S.; Teichmann, R.; Zuckerberger, A.; Steimer, P. Comparison of High Power IGBTs and Hard Driven GTOs for High Power Inverters. Conf. Rec. IEEE APEC, 1998, S. 711–718

    Google Scholar 

  12. Bernet, S.; et al. Evaluation of a High Power ARCP Voltage Source Inverter with IGCTs. Proc. IEEE IAS, Phoenix (USA), 1999, Paper 24.1

    Google Scholar 

  13. Bernet, S.; Apeldoorn, O.; Steimer, P. Technologische Entwicklungen und Applikationen von IGCTs. Konferenzband der ETG Fachtagung „Leistungshalbleiter und ihre Anwendungen“, Bad Nauheim 2002, S. 143–154

    Google Scholar 

  14. Boeck, R.; Gaupp, O.; Dähler, P.; Bärlocher, E.; Werninger, J.; Zanini, P. Bremen’s 100 MW Static Frequency Intertie. ABB Review, Vol. 6 (1996)

    Google Scholar 

  15. Bösterling, W.; Rüther, K.-A. Asymmetrisch sperrende Thyristoren für die Leistungselektronik. ETZ 106 (1985), S. 362–266

    Google Scholar 

  16. Boss, P. Dynamische Probleme der Thyristortechnik. VDE-Tagung Aachen 1971, S. 251–261

    Google Scholar 

  17. Carroll, E.I.; et al. Oscillographic Energy-Per-Event Measurement Techniques For Power Semiconductors. Proc. of the Power Conversion Conference PCIM, Long Beach, California, Oct. 1989

    Google Scholar 

  18. Carroll, E. IGCT: The First Four Years. Proc. IPEE 2000, Beijing

    Google Scholar 

  19. De Bruyne, P.; Vitins, J.; Sittig, R. Reverse Conducting Thyristors. in [34], S. 151–173

    Google Scholar 

  20. Eicher, S.; Bernet, S.; Steimer, A.; Weber, A. The 10 kV IGCT — A New Device for Medium Voltage Drives. IEEE IAS 2000, Rom, Italien

    Google Scholar 

  21. Fischer, F. Neue rückwärtsleitende Thyristormodule — Aufbau und Anwendungen. BBC Nachrichten 64 (1982), S. 334–340

    Google Scholar 

  22. Fister, V.; et al. Bahnstromrichter Karlsfeld der Bayernwerke AG. Elektrische Bahnen, Jg. 95 (1997), H. 11, S. 297–303

    Google Scholar 

  23. Gerlach, W. Thyristoren. Springer Verlag, Berlin, 1979

    Google Scholar 

  24. Gerlach, W. Thyristor mit Querfeldemitter. Zeitschr. angew. Physik, Bd. 19 (1975), S. 396–400

    Google Scholar 

  25. Grüning, H. E. Application Specific High Power IGCT-Converters. PCIM Nürnberg, 1999, S. 639–644

    Google Scholar 

  26. Grüning, H.; et al. Gate Commutated Thyristors (GCT) hoher Leistung — Technologie und Elementeigenschaften. ETG Fachtagung „Leistungshalbleiter und ihre Anwendungen“, Bad Nauheim 2002, S. 55–64

    Google Scholar 

  27. Grüning, H.; Zuckerberger, A. Hard Drive of High Power GTOs — Better Switching Capability Obtained Through Improved Gate-Units. Proceedings of IEEE Industry Applications Conference IAS, 1996, Vol. 3, S. 1474–1480

    Google Scholar 

  28. Grüning, H.; Lendenmann, H.; Schröder, D.; Steimer, P. State-of-the-Art Verification of the Hard Driven GTO-Inverter Development for the 91 MVA Intertie in Bremen. Proceedings of PESC, Baveno, Italien, 1996

    Google Scholar 

  29. Grüning, H.; et al. High-Power Hard-Driven GTO Module for 4,5 kV, 3 kA Snubberless Operation. Conference Records of PCIM 1996, S. 169–183.

    Google Scholar 

  30. Grüning, H.; et al. Hard Drive of High-Power GTOs: Better Switching Capability Obtained Through Improved Gate-Units. Conference Record of the 31st IEEE Industry Applications Conference, Vol. 3, S. 1474–1480, San Diego, USA, 1996

    Google Scholar 

  31. Grüning, H. Der GCT (Gate Commutated Thyristor) — Stärken von GTO-und IGBT-Technologie in einer Einheit. Elektrotechnische Gesellschaft im VDE, ETG, Fachtagung Bauelemente der Leistungselektronik und ihre Anwendungen (ETG-FB 72), Bad Nauheim, 1998

    Google Scholar 

  32. Grüning, H.; Tsuchiya, T.; Satoh, K.; Yamaguchi, Y.; Mizohata, F.; Takao, K. 6 kV 5 kA RCGCT with Advanced Gate Drive Unit. Proc. of the 13th Internat. Symposion on Power Semiconductor Devices and ICs, ISPSD 2001, S. 133–136

    Google Scholar 

  33. Grüning, H.; Koyanagi, K. A New Compact High dI/dt Gate Drive Unit for 6-Inch GCTs. Proc. ISPSD, Kitakyushu, 2004

    Google Scholar 

  34. Grüning, H.; Ødegard, B. High Performance Low Cost MVA Inverters Realized with Integrated Gate Commutated Thyristors (IGCT). Proc. EPE 1997, Trondheim (Norway)

    Google Scholar 

  35. Harding, O.L.; Tayler, P.D.; Frith, P.J. Recent Advances in High Voltage Thyristor Design. Fourth International Conference on AC and DC Power Transmission, London, 1985, S. 315–319

    Google Scholar 

  36. Heumann, K. Evaluation of Turn-Off Semiconductor Devices and Future Trends. ISPE 1992 Seoul, S. 36–45

    Google Scholar 

  37. Heumann, K.; Stumpe, A.C. Thyristoren. Teubner Verlag, Stuttgart, 1970

    Google Scholar 

  38. Hoffmann, A.; Stocker, K. Thyristor-Handbuch. Siemens AG, Berlin, München, 1976

    Google Scholar 

  39. Huang, A.Q.; Motto, K.; Li, Y. Development and Comparison of High-Power Semiconductor Switches. 3rd International Power Electronics and Motion Control Conference, PIEMC 2000, Proc. Vol. 1, S. 70–78.

    Google Scholar 

  40. Hudgins, L.; et al. Temperature Effects on GTO Characteristics. IAS 1994 Denver, S. 1182–1187

    Google Scholar 

  41. Hughes, K.B.; et al. Effect of Snubber Circuit Parameters on the Turn-Off Voltage Spike of Large GTO Thyristors. IAS 1993, S. 1280–1286

    Google Scholar 

  42. Ishido, M.; Debled, G.; et al. Analysis of Series Connection of GTO Thyristors. MADEP-EPE 1991, Florenz, S. 0-374–379

    Google Scholar 

  43. Iwamoto, H.; et al. 12 kV, 1 kA Thyristor. Proceedings of IPEC, Tokyo 1990, Vol. 2, S. 1201–1206

    Google Scholar 

  44. Jaecklin, A. Performance Limitations of a GTO with Near-Perfect Technology. IEEE Trans. on Electron Devices, Vol. 39, No. 6, June 1992, S. 1507–1513

    Article  Google Scholar 

  45. Johnson, C.M.; et al. Correlation Between Local Segment Characteristics and Dynamic Current Redistribution in GTO Power Thyristors. EEE Transactions on Electron Devices Vol. 41 (1994) No. 5, S. 793–799

    Article  Google Scholar 

  46. Kabaza, H.; Schulze H.-J. Cosmic Radiation as a Cause for Power Device Failure and Possible Counter-measures. ISPSD 1994, Davos, S. 9–12

    Google Scholar 

  47. Kegura, M.; Akiyama, H. 8000 V 1000 A GTO with Low On State Voltage and Low Switching Loss. IEEE Trans. on Power Electronics, Vol. ED-40, S. 628–633, 1993

    Google Scholar 

  48. Kitagawa, M., Nakagawa, A.; et al. 4500 V IEGTs Having Switchng Characteristics Superior to GTO. Proceedings of the IEEE International Symposium on Power Semiconductor Devices and ICs, ISPSD 1995, S. 486–491

    Google Scholar 

  49. Krausse, J. Auger-Rekombination im Mittelgebiet durch Lastbelasteten Silizium Gleichrichter und Thyristor. Solid-State Electronics, Vol. 17 (1974), No. 5, S. 427–429

    Article  Google Scholar 

  50. Kurata, M.; et al. Gate Turn-Off Thyristors. in [34] S. 91–119

    Google Scholar 

  51. Kurata, M. A New CAD-Model of a Gate Turn-Off-Thyristor. IEEE Power Electronics Specialist Conference Record, S. 125–133, 1974

    Google Scholar 

  52. Li, Y.; Huang, A.Q.; Motto, K. Experimental and Numerical Study of the Emitter Turn-Off Thyristor (ETO). IEEE Trans. on Power Electronics, Vol. 15 (2000), No. 3, S. 561–574

    Article  Google Scholar 

  53. Li, Y.; Huang, A.Q.; Motto, K. Series and Parallel Operation of the Emitter Turn-Off (ETO) Thyristor. IEEE Trans. on Industry Applications, Vol. 38 (2002), No. 3, S. 706–712

    Article  Google Scholar 

  54. Li, Y.; Huang, A.Q.; Motto, K. Analysis of the Snubberless Operation of the Emitter Turn-Off Thyristor (ETO). IEEE Trans. on Power Electronics, Vol. 158 (2003), No. 1, S. 30–37

    Google Scholar 

  55. Lyons, J.P.; Vlatkovic, V.; Espelage, P.M.; Boettner, F.H.; Larsen, E. Innovation IGCT Main Drives. Proc. IEEE IAS, Phoenix (USA), 1999

    Google Scholar 

  56. Matsuda, H.; Fujiwara, T.; et al. Analysis of GTO Failure Mode During DC Voltage Blocking. ISPSD 1994 Davos, S. 221–226

    Google Scholar 

  57. Matsuo, H.; Iida, K.; et al. A New Gate Drive Circuit with Energy-Storage Reactor Developed for High Power GTO Thyristors. MADEP-EPE 1991, Florenz, S. 0-380–385

    Google Scholar 

  58. Mitlehner, H.; Pfirsch, F.; Schulze, H.-J. A Novel 8 kV Light-triggered Thyristor with Overvoltage Protection. Proceedings of IPEC, Tokyo 1990, Vol. 2, S. 1207–1212

    Google Scholar 

  59. Mitlehner, H., Schulze, H.-J. Current Developments in High-Power Thyristors. EPE Journal, Vol.4, No. 1, 1994, S. 36–42

    Google Scholar 

  60. Motto, K.; Li, Y.; Huang, A.Q. Comparison of the State-of-the-Art High Power IGBTs, GCTs, and ETOs. 15th Annual IEEE Applied Power Electronics Conference, APEC 2000, Proc. Vol. 2, S. 1129–1136

    Google Scholar 

  61. Nakagawa T.; et al. A New Low Loss High Power GTO with Low Snubber Capacity. Proc. IAS 1993, S. 1299–1304

    Google Scholar 

  62. New, T.C.; Frobenius, W.D.; Desmond, T.J.; Hamilton, D.R. High Power Gate-Controlled Switch. IEEE Trans. Electron Devices, Vol. ED-17 (1970), S. 706–710

    Article  Google Scholar 

  63. Niedernostheide, F.-J.; Schulze, H.-J.; Kellner-Werdehausen, U. Self-Protection Functions in Direct Light-Triggered High-Power Thyristors. Microelectronics Journal. Vol. 32, No. 5/6 (May/June 2001), S. 457–461

    Article  Google Scholar 

  64. Niedernostheide, F.-J.; Schulze, H.-J.; Kellner-Werdehausen, U. Self-Protected High-Power Thyristors. Proc. PCIM, 2001, Power Conversion, Nürnberg, Juni 2001, S. 51–56

    Google Scholar 

  65. Ødegard, B.; et al. An Application-Specific Asymmetric IGCT. Proc. PCIM, USA 2001

    Google Scholar 

  66. Ogura, T.; et al. 6000 V Gate Turn-Off Thyristors with n-Buffer and New Anode Short Structure. IEEE Trans. Electron Devices, Vol. ED-38, S. 1491–1495, 1991

    Article  Google Scholar 

  67. Ogura, T.; et al. High Frequency 6000 V Double-Gate GTOs. IEEE Trans. Electron Devices, Vol. ED-38, S. 1605–1611, 1991

    Google Scholar 

  68. Pfirsch, F. Patent DE4215378-C1

    Google Scholar 

  69. Ruff, M.; Schulze, H.-J.; Kellner, U. Progress in the Development of an 8 kV Light-Triggered Thyristor with Integrated Protection Functions. IEEE ED, Vol. 46, No. 8, Aug. 1999, S. 1768–1774

    Google Scholar 

  70. Sanchez, J.L.; Berriane, R.; et al. Functional Integration of MOS and Thyristor Devices: A Useful Concept to Create New Light Triggered Integrated Switches for Power Conversion. EPE 1993 Brighton, S. 5–9

    Google Scholar 

  71. Satoh, K.; Nakagawa, T.; Yamamoto, M.; Morishita, K.; Kawakami, A. 6 kV/4 kA Gate Commutated Turn-Off Thyristor with Operation DC Voltage of 3.6 kV. Proc. of the 10th International Symposion on Power Semiconductor Devices and ICs, ISPSD, June 1998, S. 205–208

    Google Scholar 

  72. Satoh, K.; Morishita, K.; Hirano, N.; Yamamoto, M.; Kawakami, A. New Design Approach for Ultra High Power GCT Thyristor. Proc. of the 11th International Symposion on Power Semiconductor Devices and ICs, ISPSD, May 1999, S. 351–354

    Google Scholar 

  73. Schlangenotto, H.; Neubrand, H. Dynamical Avalanche during Turn-Off of GTO-Thyristors and IGBTs. Arch. Elektrotechnik 72, Febr. 1989, S. 113–123

    Article  Google Scholar 

  74. Schulze, H.-J.; Mitlehner, H. Improved Blocking Voltage of Power Thyristors by Local Variation of the Current Gain. MADEP-EPE 1991 Florenz 0-393-395

    Google Scholar 

  75. Schulze, H.-J., Niedernostheide, F.-J.; Kellner-Werdehausen, U.; Dorn, J. Thyristoren mit integrierten Schutz-und Ansteuerfunktionen. ETG-Fachbericht 88, Bauelemente der Leistungselektronik und ihre Anwendungen, VDE-Verlag, Berlin 2002, S. 47–53

    Google Scholar 

  76. Schulze, H.-J.; Niedernostheide, F.-J.; Kellner-Werdehausen, U. Thyristor with Integrated Forward Recovery Protection. Proc. of 2001 International Symposium on Power Semiconductor Devices & ICs, Osaka, May 2001, S. 199–202

    Google Scholar 

  77. Schulze, H.-J.; Niedernostheide, F.-J.; Kellner-Werdehausen, U., Przybilla, J.; Uder, M. High-voltage Thyristors for HVDC and Other Applications: Light-triggering Combined with Self-Protection Functions. Proceedings of the International Conference POWER ELECTRONICS, Shanghai, China, Mai 2003, S. 47–52

    Google Scholar 

  78. Schulze, H.-J.; Mitlehner, H. Improved Blocking Voltage of Power Thyristors by Local Variation of the Current Gain. EPE-MADEP, Florenz, 1991, 0-393-395

    Google Scholar 

  79. Schwarzbauer, H.; Kuhnert, R. Novel Large Area Joining Technique for Improved Power Device Performance. IEEE Trans. on Industry Devices. Vol. 27, No. 1, Jan./Feb. 1991, S. 93–95

    Article  Google Scholar 

  80. Siemens-PTD-Bericht für die Fachpressehttp://www.siemens.com/page/1,3771,253898-0-12_0_11063-0,00.html, Sept. 2001

    Google Scholar 

  81. Steimer, P.K.; et al. IGCT — eine neue, zukunftsweisende Technik für kostengünstige Hochleistungs-Umrichter. ABB Technik, 1998, H. 5

    Google Scholar 

  82. Steimer, P.K.; Steinke, J.K.; Grüning, H. A Reliable, Interface Friendly Medium Voltage Drive Based on the Robust IGCT and DCT Technologies. Proc. IEEE IAS, Phoenix (USA), 1999, S. 1505–1512

    Google Scholar 

  83. Steimer, P.K.; Grüning, H.; Werninger, J. The IGCT — The Key Technology for Low Cost, High Reliable High Power Converters with Series Connected Turn-Off Devices. Proc. EPE, Trondheim, Norway 1997

    Google Scholar 

  84. Steimer, P.K.; Grüning, H.; Werninger, J.; Carroll, E.; Klaka, S.; Linder, S. IGCT — A New Emerging Technology for High Power, Low Cost Inverters. Proc. IEEE IAS 1997, New Orleans, S. 1592–1599

    Google Scholar 

  85. Stiasny, Th.; Ødegard, B.; Carroll, E. Lifetime Engineering for the Next Generation of Application-Specific IGCTs. Control & Drives, London, March 2001

    Google Scholar 

  86. Stiasny, Th.; Streit, P.; Lüscher, M.; Frecker, M. Large Area IGCTs with Improved SOA. Proc. PCIM 2004, S. 3a–5

    Google Scholar 

  87. Stockmeier, T.; Haddon, T.H. The SIPOS Si-Interface — A Critical Issue for Power Device Passivation. MADEP-EPE 1991, Florenz, S. 0-039–043

    Google Scholar 

  88. Suzuki, T.; Ugazin, T.; Kekura, M.; Watanabe, T.; Sueoka, T. Switching Characteristics of High Power Buried Gate Turn-Off Thyristor. IEDM Tech. Dig., S. 492–495, 1982

    Google Scholar 

  89. Takahashi, Y.; Watanabe, M.; et al. 6 kV 3000 A High Power Reverse Conduction GTO Thyristor. MADEP-EPE 1991, Florenz, S. 0-369–373

    Google Scholar 

  90. Taylor, P.D. Thyristor Design and Realization. John Wiley & Sons, Chichester, 1987

    Google Scholar 

  91. Tower, M.S.; Mawby, P. Self Protected Light Triggered Thyristors. IEE Colloquium Recent Advances in Power Devices, London, 1999, S. 8/1–8/10

    Google Scholar 

  92. Tschirley, S.; Bernet, S.; Carroll, E.; Streit, P.; Steimer, P. Design and Characteristics of Low On-State Voltage and Fast Switching 10 kV IGCTs. Proc. PCIM 2004, S. 11

    Google Scholar 

  93. van Ligten, R.H.; Navon, D. Base Turn-Off of p-n-p-n Switches. IRE WESCON Convention Record, Part 3 on Electron Devices, 1960, S. 49–52

    Google Scholar 

  94. Vitins, J.; Steiner, J.L. New Manufactoring Technology for High Voltage Thyristors. IEEE Ind. Appl. Soc. Mtg. Conf. Rec., 1987, S. 531–536

    Google Scholar 

  95. Wirth, F.W. High-Speed Snubberless Operation of GTOs Using a New Gate Drive Technique. IEEE-IAS Conf. Recordings, 1986, S. 453–457

    Google Scholar 

  96. Wirth, F.W. High-Speed Snubberless Operation of GTOs Using a New Gate Drive Technique. IEEE Trans. on Industry Applications, Vol. 24 (1988), No. 1, S. 127–131

    Article  Google Scholar 

  97. Wolley, E.D. Gate Turn-Off in p-n-p-n Devices. IEEE Trans. Electron Devices, Vol. ED-13, S. 590–597, 1966

    Article  Google Scholar 

  98. Yamaguchi, M.; Ogura, T.; et al. Mode-Transition Optimized 4,5 kV IGTT (IGBT Mode Turn-Off Thyristor). Proceedings of the IEEE International Symposium on Power Semiconductor Devices and ICs, ISPSD 1996, S. 257–260

    Google Scholar 

  99. Yamaguchi, Y.; Oota, K.; Kurachi, K.; Tokunoh, F.; Yamaguchi, H.; Iwamoto, H.; Donlon, J.; Motto, E. A 6 kV/5 kA Reverse Conducting GCT. Proc. IEEE IAS 2001, S. 1497–1503

    Google Scholar 

  100. Yatsuo, T.; Satou, Y.; et al. Electrical Characteristics of PNIPN GTO. MADEP-EPE 1991, Florenz, S. 0-352–356

    Google Scholar 

  101. Yatsuo, T.; Nagano, T.; Fukui, H.; Okamura, M.; Sakurada, S. Ultrahigh-Voltage High-Current Gate Turn-Off Thyristors. IEEE Trans. Electron Devices, Vol. ED-31 (1984), S. 1681–1686

    Article  Google Scholar 

  102. Zargari, N.R.; et al. A New Current-Source Converter Using a Symmetric Gate-Commutated Thyristor (SGCT). IEEE Trans. on Industry Applications, Vol. 37 (2001), No. 3

    Google Scholar 

  103. Zargari, N.R.; et al. A New Current-Source Converter Using a Symmetric Gate-Commutated Thyristor (SGCT). IEEE IAS, Rome 2000, Vol. 3, S. 1957–1963

    Google Scholar 

  104. Zeller, H.R. Cosmic Ray Induced Breakdown in High Voltage Semiconductor Devices Microscopic Model and Phenomenological Lifetime Prediction. ISPSD 1994, Davos, S. 339–342

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Thyristor. In: Leistungselektronische Bauelemente. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31735-X_5

Download citation

Publish with us

Policies and ethics