Advertisement

Diode

Chapter
  • 4.4k Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 2 Diode

  1. [105]
    Benda, H.; Hoffmann, A.; Spenke, E. Switching Processes in Alloyed pin-Rectifiers. Solid State Electronics, Vol. 8 (1965), No. 12, S. 887–906CrossRefGoogle Scholar
  2. [106]
    Benda, H.; Spenke E. Reverse Recovery Processes in Silicon Power Rectifiers. Proc. IEEE, Vol. 55, S. 1331–1354, Aug. 1967CrossRefGoogle Scholar
  3. [107]
    Berz, F.; Cooper Recombination in the End Regions of pin-Diodes. Solid-State Electronics, Vol. 22 (1979), No. 3, S. 293–301CrossRefGoogle Scholar
  4. [108]
    Burtscher, J.; Dannhäuser, F.; Krauße, J. Die Rekombination in Thyristoren und Gleichrichtern aus Silizium: Ihr Einfluß auf die Durchlaßkennlinie und das Freiwerdezeitverhalten. Solid-State Electronics, Vol. 18 (1975), No. 1, S. 35–63CrossRefGoogle Scholar
  5. [109]
    Chynoweth, A. Ionisation Rates for Electrons and Holes. Phys. Rev. (1958), S. 1537–1540Google Scholar
  6. [110]
    Fletcher, N. The High Current Limit for Semiconductor Junction Devices. Proceedings of the IRE, 1957, S. 862–872Google Scholar
  7. [111]
    Gebhardt, H.; Keumann, K. A New Specifying Method for Power Diodes. MADEP-EPE 1991, Florenz, S. 0-114–118Google Scholar
  8. [112]
    Gerstenmaier, Y.C. A Study on the Varation of Carrier Lifetime with Temperature in Bipolar Silicon Devices and its Influence on Device Operation. ISPSD 1994 Davos, S. 271–274Google Scholar
  9. [113]
    Herlet, A. The Forward Characteristic of Silicon Power Rectifiers at High Current Densities. Solid-State Electronics, Vol. 11 (1968), No. 8, S. 717–742CrossRefGoogle Scholar
  10. [114]
    Huang, Q. MOS-Controlled Diode — A New Class of Fast Switching Low Loss Power Diode. VPEC 1994, S. 97–105Google Scholar
  11. [115]
    Kaußen, F.; Schlangenotto, H. Aktuelle Entwicklungen bei schnell schaltenden Dioden. ETG Fachtagung, 13.–14. Mai 1992 Bad NauheimGoogle Scholar
  12. [116]
    Kennedy, D.P.; O’Brien, R.R. Avalanche Breakdown Characteristics of a Diffused pn-Junction. IRE Trans. Electron Devices ED-9 (1962), S. 478–483Google Scholar
  13. [117]
    Locher, T. Avalanche Multiplication in Semiconductors: A Modification of Chynoweth’s Law. Solid-State Electronics, Vol. 34 (1991), No. 1, S. 33–42CrossRefMathSciNetGoogle Scholar
  14. [118]
    McMurray, W. Optimum Snubbers for Power Semiconductors. IEEE Trans. on Industry Applications, Vol. IA-8 (1972), S. 593–600CrossRefGoogle Scholar
  15. [119]
    Nowak, W.D.; Schlangenotto, H.; et al. Verbesserung des Schaltverhaltens bei schnellen Dioden. 4. Int. Makroelektronik-Konferenz, München, Deutschland, November 1988Google Scholar
  16. [120]
    Nowak, W.D.; Schlangenotto, H.; et al. Improved Switching Behaviour of Fast Power Diodes. PCIM Europe, April–Mai 1989Google Scholar
  17. [121]
    Schlangenotto, H.; Füllmann, M.; Nowak, W.-D. Schnelle Dioden. Vortrag zur ETG-Fachtagung „Abschaltbare Elemente der Leistungselektronik“ Bad Nauheim, Deutschland, Mai 1988, 21 SeitenGoogle Scholar
  18. [122]
    Schlangenotto, H.; Serafin, J.; et al. Improved Reverse Recovery of Fast Power Diodes Having Self-Adjusting p-Emitter Efficiency. EPE 1989 Aachen, Deutschland, 6 SeitenGoogle Scholar
  19. [123]
    Schlangenotto, H.; Füllmann, M. A Hybrid Recovery Fast Power Diode with Strongly Improved Reverse Recovery. EPE 1993 Brighton, S. 185–190Google Scholar
  20. [124]
    Schlangenotto, H.; Serafin, J.; et al. Improved Reverse Recovery of Self-Adapting p-Emitter Efficiency Diodes (SPEED). Archiv für Elektrotechnik 74 (1990), S. 15–23, Springer Verlag, Berlin, 1990CrossRefGoogle Scholar
  21. [125]
    Shokley, W.; Hoyce, R.M.; Chih-Tang Seh Carrier Generation and Recombination in pn-Junctions and pn-Junction Characteristics. Proc. IRE, S. 128–1243, Sept. 1957Google Scholar
  22. [126]
    Spenke, E. pn-Übergänge. Springer Verlag, Berlin, 1979Google Scholar
  23. [127]
    Winternheimer, S. Investigations on the Turn-On Process in Fast Recovery Power Diodes. MADEP-EPE 1991, Florenz, S. 0-119–124Google Scholar

Silizium-Leistungsdiode

  1. [128]
    Baliga, B.J., in: Sze, S.M. Modern Semiconductor Device Physics. New York, 1998Google Scholar
  2. [129]
    Baliga, B.J. Modern Power Devices. New York, 1987Google Scholar
  3. [130]
    Benda, H.J.; Spenke, E. Reverse Recovery Process in Silicon Power Rectifiers. Proceedings of the IEEE, Vol. 55 (1967), No. 8Google Scholar
  4. [131]
    Deboy, G.; et al. Absolute Measurement of Carrier Concentration and Temperature Gradients in Power Semiconductor Devices by Internal IR-Laser Deflection. Microelectronic Engineering, Vol. 31 (1996), S. 299–307CrossRefGoogle Scholar
  5. [132]
    Domeij, B.; Breitholtz, M.; Östling; Lutz, J. Stable Dynamic Avalanche in Si Power Diodes. Applied Physics Letters, Vol. 74, No. 21, S. 3170 (1999)CrossRefGoogle Scholar
  6. [133]
    Domeij, M.; Lutz, J.; Silber, D. On the Destruction Limit of Si Power Diodes During Reverse Recovery with Dynamic Avalanche. IEEE Transactions on Electronic Devices, Vol. 50, No. 2, S. 486–493 (2003)CrossRefGoogle Scholar
  7. [134]
    Drücke, D.; Silber, D. Power Diodes with Active Control of Emitter Efficiency. Proceedings of the ISPSD 2001, Osaka, Japan, S. 231–234Google Scholar
  8. [135]
    Drücke, D. Neue Emitterkonzepte für Hochspannungsschalter und deren Anwendung in der Leistungselektronik. Dissertation, Bremen 2003Google Scholar
  9. [136]
    Egawa, H. Characteristics and Failure Mechanism of High Voltage Diodes. IEEE Transactions on Electron Devices, Vol. ED-13, No. 11, S. 754 (1966)CrossRefGoogle Scholar
  10. [137]
    Fulop, W. Calculation of Avalanche Breakdown Voltages of Silicon pn-Junctions. Solid-State Electronics, Vol. 10 (1967), No. 1, S. 39–43CrossRefGoogle Scholar
  11. [138]
    Herlet, A. The Forward Characteristic of Silicon Power Rectifiers at High Current Densities. Solid-State Electronics, Vol. 11 (1968), No. 8, S. 717–742CrossRefGoogle Scholar
  12. [139]
    IXYS Datenblatt FMD 21-05QC (2000)Google Scholar
  13. [140]
    Kaindl, W. Modellierung höhenstrahlinduzierter Ausfälle in Halbleiterleistungsbauelementen. Dissertation, TU München, 2005Google Scholar
  14. [141]
    Kapels, H.; Plikat, R.; Silber, D. Dielektrische Ladungsfallen: Ein neues Strukturelement für Leistungshalbleiter. 28. Kolloquium Halbleiter-Leistungsbauelemente und Materialgüte von Silizium, Freiburg, 1999, S. 12/1–12/6Google Scholar
  15. [142]
    Kaschani, K. T. Untersuchung und Optimierung von Leistungsdioden. Dissertation, Braunschweig, 1997Google Scholar
  16. [143]
    Kumagai N.; Yamazaki T. Injection Controllable Schottky Barrier Recifier. Proceedings of the ISPSD 1993, Monterey, USAGoogle Scholar
  17. [144]
    Laska, T; Lorenz, L.; Mauder, A. The Field Stop IGBT Concept with an Optimized Diode. Proc. PCIM 2000, NürnbergGoogle Scholar
  18. [145]
    Lutz, J. Axial Recombination Centre Technology for Freewheeling Diodes. Proceedings of the 7th 7th European Conference on Power Electronics and Applications, Trondheim, 1997, S. 1502–1506Google Scholar
  19. [146]
    Lutz, J.; Mauder, A. Aktuelle Entwicklungen bei Silizium-Leistungsdioden. ETG-Fachbericht 88, VDE-Verlag, Berlin, 2002Google Scholar
  20. [147]
    Lutz, J.; Scheuermann, U. Advantages of the New Controlled Axial Lifetime Diode. Proc. PCIM 1994, NürnbergGoogle Scholar
  21. [148]
    Lutz, J.; Südkamp, W.; Gerlach, W. IMPATT Oscillations in Fast Recovery Diodes Due to Temporarily Charged Radiation-Induced Deep Levels. Solid-State Electronics, Vol. 42 (1998), No. 6, S. 931–938CrossRefGoogle Scholar
  22. [149]
    Lutz, J.; Nagengast, P. Neue Entwicklungen bei schnellen Dioden. VDE-ETG Fachtagung Bauelemente der Leistungselektronik und ihre Anwendungen, Bad Nauheim, 1998, S. 27–42Google Scholar
  23. [150]
    Lutz, J.; Wintrich, A. The Hybrid Diode — Mode of Operation and Application. European Power Electronics and Drives Journal, Vol. 10 (2000), Nr. 2Google Scholar
  24. [151]
    Miller, M.D. Differences Between Platinum-and Gold-Doped Silicon Power Devices. IEEE Transactions on Electron Devices, Vol. ED-23 (1976), No. 12Google Scholar
  25. [152]
    Nagasu, M.; et al. 3,3kV-IGBT Modules Having Soft Recovery Diodes with High Reverse Recovery di/dt Capability. Proceedings of the PCIM 98 Japan, 175 (1998)Google Scholar
  26. [153]
    Nemoto, M.; et al. Great Improvement in IGBT Turn-On Characteristics with Trench Oxide PiN Schottky (TOPS) Diode. Proc. ISPSD 2001, S. 307–310Google Scholar
  27. [154]
    Niedernostheide, F. J.; Falck, E.; Schulze, H. J.; et al. Avalanche Injection and Current Filaments in High-Voltage Diodes During Turn-Off. Proceedings of the 7th Int. Seminar on Power Seminconductors, ISPS, Prag, September 2004Google Scholar
  28. [155]
    Novak, W.D.; Schlangenotto, H.; Füllmann, M. Improved Switching Behaviour of Fast Power Diodes. PCIM Europe, April–Mai, 1989Google Scholar
  29. [156]
    Rahimo, M.; Kopta, A.; et al. Switching-Self-Clamping-Mode „SSCM“, a Breakthrough in SOA Performance for High Voltage IGBTs and Diodes. Proceedings of the ISPSD 2004, S. 437–440Google Scholar
  30. [157]
    Satoh, K.; Nakagawa, T.; Moroshita, K.; et al. 4,5kV Soft Recovery Diode with Carrier Stored Structure. Proc. of the IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD’ 98), S. 313–316, Kyoto, 1998Google Scholar
  31. [158]
    Schlangenotto, H.; Maeder, H. Spatial Composition and Injection Dependence of Recombination in Silicon Power Device Structures. IEEE Transactions on Electron Devices, Vol. ED-26 (1979), No. 3, S. 191–200CrossRefGoogle Scholar
  32. [159]
    Schlangenotto, H.; Neubrand, H. Dynamischer Avalanche beim Abschalten von GTO-Thyristoren und IGBTs. Archiv der Elektrotechnik 72, S. 113–123 (1989)CrossRefGoogle Scholar
  33. [160]
    Schlangenotto, H.; Serafin, J.; Sawitzki, F.; Maeder, H. Improved Recovery of Fast Power Diodes with Self-Adjusting p-Emitter Efficiency. IEEE Electron Devices Letters, Vol. 10 (1989), No. 7, S. 322–324CrossRefGoogle Scholar
  34. [161]
    Shields, J. Breakdown in Silicon pn-Junctions. Journal Electron. Control, No. 6, 1959Google Scholar
  35. [162]
    Siemieniec, R.; Südkamp, W.; Lutz, J. Determination of Parameters of Radiation Induced Traps in Silicon. Solid-State Electronics, Vol. 46 (2002), No. 6, S. 891–901CrossRefGoogle Scholar
  36. [163]
    Silber, D.; Novak, W.D.; Wondrak, W; Thomas, B.; Berg, H. Improved Dynamic Properties of GTO-Thyristors and Diodes by Proton Implantation. IEDM, Washington, December, 1985Google Scholar
  37. [164]
    Silber, D.; Plikat, R.; Kapels, H. Halbleiterbauelement mit dielektrischen oder halbisolierenden Abschirmstrukturen. Patent, DE 198 53 040.4, 18.11.1998Google Scholar
  38. [165]
    SIMPLORER User Manual, Simec GmbH & Co KG, Chemnitz, 2000Google Scholar
  39. [166]
    Singh, R.; Baliga, B.J. Analysis and Optimization of Power MOSFETs for Cryogenic Operation. Solid-State Electronics, Vol. 36 (1993), No. 8, S. 1203–1211CrossRefGoogle Scholar
  40. [167]
    Sze, S.M. Physics of Semiconductor Devices. New York, 1981Google Scholar
  41. [168]
    Tomomatsu, Y.; et al. An Analysis and Improvement of Destruction Immunity During Reverse Recovery for High Voltage Planar Diodes Under High dI rr/dt Condition. Proceedings of the ISPSD 1996, S. 353–356Google Scholar
  42. [169]
    Wachtuka, G.K. Analytical Model for the Destruction Mechanism of GTO-Like Devices by Avalanche Injection. IEEE Transactions on Electron Devices, Vol. 38 (1991), No. 6, S. 1516CrossRefGoogle Scholar
  43. [170]
    Wolley, E.D.; Bevaqua, S.F. High Speed, Soft Recovery Epitaxial Diodes for Power Inverter Circuits. IEEE Industrial Applications Society Meeting Digest, 1981Google Scholar
  44. [171]
    Wondrak, W. Dissertation, Frankfurt, 1985Google Scholar
  45. [172]
    Zacharias, L.; Wintrich, A. Diodenmodellierung. Design & Elektronik Entwicklerforum Batterien, Ladekonzepte, Stromversorgungsdesign, München, 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations