Advertisement

Halbleiterphysik

Chapter
  • 4.4k Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 1 Halbleiterphysik

  1. [43]
    Arora, N.D.; Hauser, J.R.; Roulston, D.J. Electron and Hole Mobilities as a Function of Concentration and Temperature. IEEE Transactions on Electron Devices, Vol. 29 (1982), No. 2, S. 292–295CrossRefGoogle Scholar
  2. [44]
    Ashcroft, N.W.; Mermin, N.D. Solid State Physics. Saunders CollegeGoogle Scholar
  3. [45]
    Askerov, B.M. Electron Transport Phenomena in Semiconductors. World Scientific Publishing, Singapore, New Jersey, London, Hongkong, 1. Auflage, 1994Google Scholar
  4. [46]
    Baliga, B.J. Optimum Semiconductor for High Power Electronics. IEEE Electron Device Letters, Vol. 10 No. 10, S. 455–457, October 1989CrossRefGoogle Scholar
  5. [47]
    Blakemore, J.S. Solid State Physics. Cambridge University Press 1988Google Scholar
  6. [48]
    Bludau, W.; Onton, A.; Heinke, W. Temperature Dependence of the Band Gap in Silicon. J. Appl. Phys, 45(4):1846–48, April 1974CrossRefGoogle Scholar
  7. [49]
    Boras, R.; Aloisi, P.; et al. Avalanche Capability of Todays Power Semiconductors. EPE 1993 Brighton, S. 167–172Google Scholar
  8. [50]
    Bronstein, I.N.; Semendjajew, K.A. Taschenbuch der Mathematik. Harri Deutsch, Thun und Frankfurt, 19. Auflage, 1981Google Scholar
  9. [51]
    Brooks, H. Scattering by Ionized Impurities in Semiconductors. Phys. Rev. 83, 1951, S. 879Google Scholar
  10. [52]
    Callen, H. B. Thermodynamics and an Introduction to Thermostatistics. John Wiley & Sons, New York, 1985, § 14-5zbMATHGoogle Scholar
  11. [53]
    Canali, C.; Majni, G.; Minder, R.; Ottaviani, G. Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature. IEEE Transactions on Electron Devices (ED-22), 1975, S. 1045–1047Google Scholar
  12. [54]
    Caughey, D.; Thomas, R. Carrier Mobilities in Silicon Empirically Related to Doping and Field. Phys. Rev., Vol. 109 (1958), No. 5, S. 388–390Google Scholar
  13. [55]
    Chih Hsin Wang; Konstantinos Misiakos; Neugroschel, A. Temperature Dependence of Minority Hole Mobility in Heavily Doped Silicon. Appl. Phys. Lett., 57, S. 159–161, 1990CrossRefGoogle Scholar
  14. [56]
    Conwell, E.; Weisskopf, V.F. Theory of Impurity Scattering in Semiconductors. Phys. Rev. 77, 1950, No. 3, S. 388–390zbMATHCrossRefGoogle Scholar
  15. [57]
    Dannhauser, F. Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freuen Ladungsträger-Part I Solid-State Electronics, Vol. 15 (1972), No. 12, S. 1371–1375CrossRefGoogle Scholar
  16. [58]
    Debye, P.P.; Conwell, E.M. Electrical Properties of N-Type Germanium. Phys. Rev. 93, 1950, S. 693–706CrossRefGoogle Scholar
  17. [59]
    Dorkel, J.M.; Leturcq, Ph. Carrier Mobilities in Silicon Semiempirically Related to Temperature, Doping and Injection Level. Solid-State Electronics, Vol. 24 (1981), No. 9, S. 821–825CrossRefGoogle Scholar
  18. [60]
    Evans, R.C. Einführung in die Kristallchemie. Walter de GruyterGoogle Scholar
  19. [61]
    Fischetti, M.V. Effect of the Electron-Plasmon Interaction on the Electron Mobility in Silicon. Phsy. Rev. B, Vol. 44, Nb. 11, S. 5527–5534, 1991CrossRefGoogle Scholar
  20. [62]
    Fossum, J. G.; Lee, D. S. A Physical Model for The Dependence of Carrier Lifetime on Doping Density in Degenerate Silicon. Solid State Electronics, Vol. 25, No. 8, S. 741–747, 1982CrossRefGoogle Scholar
  21. [63]
    Fossum, J. G.; Martens, R. P.; et al. Carrier Recombination and Lifetime in Highly Doped Silicon. Solid State Electronics, Vol. 26, No. 6, S. 569–576, 1983CrossRefGoogle Scholar
  22. [64]
    Goebel, H.; Hoffmann, K. Full Dynamic Power Diode Model Including Temperature Behavior for Use in Circuit Simulators. Proc. of the ISPSD 1992, Tokyo, Japan, 1992Google Scholar
  23. [65]
    Green, M.A. Intrinsic Concentration, Effective Densities of States, and Effective Mass in Silicon J. Appl. Phys., 67(6):2944–43,2954, March 1990CrossRefGoogle Scholar
  24. [66]
    Gresserov, B.N.; Mnatsakanov, T.T. Estimate of the Role of the Electron-Hole Scattering in the Transport of Carriers in Multilayer Gallium Arsenide Structures. Sov. Phys. Semicond., 24(6) (Sept. 1990), S. 1042–43Google Scholar
  25. [67]
    Hess, K. Advanced Theory of Semiconductor Devices. Englewood Cliffs, Prentice Hall, 1988Google Scholar
  26. [68]
    Höpfel, R.A.; Shah, J.; Wolff, P.A.; Cossard, A.C. Electron-Hole Scattering in GaAs Quantum Wells. Phys. Rev. B, Vol. 37,12, S. 6941–6954, 1988CrossRefGoogle Scholar
  27. [69]
    Höpfel, R.A.; Shah, J.; Wolff, P.A.; Gossard, C.G. Negative Absolute Mobility of Electrons GaAs Quantum Wells. Phys. Rev. Lett., Vol. 56,25, S. 2736–2739, 1986CrossRefGoogle Scholar
  28. [70]
    ISE, Integrated Systems Engineering AG Dessis Reference Manual, Version 1.3 ISE, ETH-Zentrum, Gloriastraße 35, CH-8092 Zürich, Switzerland, 1994Google Scholar
  29. [71]
    Kane, D.E.; Swanson, R.M. Effect of Electron-Hole Scattering on the Current Flow in Semiconductors. J. Appl. Phys., 72, S. 5294–5304, 1992CrossRefGoogle Scholar
  30. [72]
    Kittel, Ch. Einführung in die Festkörperphysik. Oldenburg Verlag, 9. Auflage, 1991Google Scholar
  31. [73]
    Krausse, J. Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger-Part II. Solid-State Electronics, Vol. 15 (1972), No., S. 1377–1381CrossRefGoogle Scholar
  32. [74]
    Krishna; Shenai, K. Potential Impact of Emerging Semiconductor Technolgies on Advanced Power Systems. IEEE Electron Device Letters, Vol. 11, No. 11, S. 520–522, November 1990CrossRefGoogle Scholar
  33. [75]
    Lang, J.E.; Madarasz; Hemeger, P.M. Temperature Dependent Density of States Effective Mass in Non-Parabolic p-Type Silicon. J. Appl. Phys., 54(6): 3612, 1983CrossRefGoogle Scholar
  34. [76]
    Lanyon, H.P.D.; Tuft, R.A. Bandgap Narrowing in Heavily Doped Silicon. IEEE Tech. Dig., Int. Electron Device Meeting (1978), S. 316Google Scholar
  35. [77]
    Macfarlane, G.G.; McClean, T.P.; Quarrington, J.E.; Roberts, V. Fine Structure in the Absorption-Edge Spectrum of Silicon. Phys. Rev., 111(5):1245–54, September 1958CrossRefGoogle Scholar
  36. [78]
    Madelung, O. Halbleiter. Handbuch der Physik, Hrg. S. Flügge, Band XX, „Elektrische Leitungsphänomene II“, Springer Verlag, BerlinGoogle Scholar
  37. [79]
    Marx, M.; Schlögl, A.; Eder, K.; Schröder, D. Comparison of Zero-Voltage-Switching Converters at Low Temperatures. PESC’96, Baveno, Italy, 1996, Proceedings S. 83–88.Google Scholar
  38. [80]
    Miller, S.L. Ionisation Rates for Electrons and Holes in Silicon. Phys. Rev. 105 (1957), S. 1246–1249CrossRefGoogle Scholar
  39. [81]
    Mnatsakanov, T.T.; Gresserov, B.N.; Pomortseva, L.I. Investigation of the Effect of Electron-Hole Scattering on Charge Carrier Transport in Semiconductors and Semiconductor Devices Under Low Injection Conditions. Solid State Electronics, Vol. 38 (1995), No. 1, S. 225–233CrossRefGoogle Scholar
  40. [82]
    Mnatsakanov, T.T.; Rostovtsev, I.L.; Philatov, N.I. Investigation of the Effect of Nonlinear Physical Phenomena on Charge Carrier Transport in Semiconductor Devices. Solid State Electronics, Vol. 30 (1987), No. 6, S. 579–585CrossRefGoogle Scholar
  41. [83]
    Mnatsakanov, T.T. Transport Coefficients and Einstein Relation in a High Density Plasma of Solids. Phys. Stat. Sol., 143, S. 225–234, 1987CrossRefGoogle Scholar
  42. [84]
    Mott, M.F. Proc. R. Soc. London A382,1 (1982)Google Scholar
  43. [85]
    E.H. Nicollian, J.R. Brews MOS Physics and Technology. John Wiley and SonsGoogle Scholar
  44. [86]
    Onsager, L. Reciprocal Relations in Irreversible Processes I. Physical Review, Vol. 37, S. 405, 1931zbMATHCrossRefGoogle Scholar
  45. [87]
    Overstraeten, R.; Man, D. Measurement on the Ionization Rates in Diffused Silicon p-n Junctions. Solid-State Electronics, Vol. 13 (1970), No. 5, S. 583–608CrossRefGoogle Scholar
  46. [88]
    Pires, R.G.; Dickstein, R.M.; Titcomb, S.L.; Anderson, R.L. Carrier Freezeout in Silicon. Cryogenics, 30:1064–68, December 1990CrossRefGoogle Scholar
  47. [89]
    Sanseverino, A.; Spirito, P. The Effect of Recombination Centers on the Lifetime Dependence upon Temperature and Injection Level. EPE 1993 Brighton, S. 58–62Google Scholar
  48. [90]
    Schlögl, A.E. Theorie und Validierung der Modellbildung bipolarer Leistungshalbleiter im Temperaturbereich von 100K bis 400K. Dissertation, TU München, 1999Google Scholar
  49. [91]
    Schlögl, A.E.; Mnatsakanov, T.T.; Kuhn, H.; Schröder, D. Temperature Dependent Behaviour of Silicon Power Semiconductors — A New Physical Model Validated by Device-Internal Probing Between 400K and 100K. PESC 1998, Kyoto, Japan, 1998, S. 1720–1725Google Scholar
  50. [92]
    Schroder, D.K. Carrier Lifetimes in Silicon. IEEE Transactions on Electron Devices, Vol. 44 (1997), No. 1, S. 160–170CrossRefGoogle Scholar
  51. [93]
    Shockley, W.; Read W. Electrons and Holes in Semiconductors. D. Van Nostrand, Princeton 1950Google Scholar
  52. [94]
    Shockley, W.; Read W. Statistics of Recombination of Holes and Electrons. Phys. Review 1952Google Scholar
  53. [95]
    Selberherr, S. Analysis and Simulation of Semiconductor Devices. Springer Verlag, Berlin, 1984Google Scholar
  54. [96]
    Shenai, K.; Scott, R.S.; et al. Optimum Semiconductors for High Power Electronics. IEEE Trans. Electron Dev., ED-36, S. 1811–1823, Sept. 1989CrossRefGoogle Scholar
  55. [97]
    Slotboom, J.W.; DeGraaf, H.C: Bandgap Narrowing in Silicon Bipolar Transistors. IEEE Transactions on Electron Devices, Vol. 24 (1977), No. 4, S. 1123–1125CrossRefGoogle Scholar
  56. [98]
    Sze, S. Physics of Semiconductor Devices. John Wiley and Sons 1981, Springer Verlag, Berlin, 1984Google Scholar
  57. [99]
    Vogler, T.; Schlögl, A.; Schröder, D. Modeling and Characterizing Power Semiconducters at Low Temperatures. ISPSD 1994 Davos, S. 237–242Google Scholar
  58. [100]
    Vogler, T.; Schlögl, A.: Kasahara, N. Modelling and Characterizing Power Semiconductors at Low Temperatures. International Power Electronics Conference, IPEC’ 95, 1995, Yokohama, Japan, Proceedings Vol. 3, S. 1232–1238Google Scholar
  59. [101]
    Wachutka, G. Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling. IEEE Trans. on Computer Aided Design (CAD), Vol. 9, S. 1141, 1990CrossRefGoogle Scholar
  60. [102]
    Wachutka, G. Unified Framework for Thermal, Electrical, Magnetic and Optical Semiconductor Device Modeling. Trans. NASECODE VII, Vol. 10, No. 4, 1991Google Scholar
  61. [103]
    Wachutka, G. Tailored Modeling of Miniaturized Electromechanical Systems Using Thermodynamic Methods. The American Society of Mechanical Engineers, DSC-Vol. 40, Book No. G00743, S. 183–198, 1992Google Scholar
  62. [104]
    Wachutka, G. Consistent Treatment of Carrier Emission and Capture Kinetics in Electrothermal and Energy Transport Models. Microelectronics Journal, 26, S. 307–315, 1995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations