Skip to main content

Halbleiterphysik

  • Chapter
  • 5825 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 1 Halbleiterphysik

  1. Arora, N.D.; Hauser, J.R.; Roulston, D.J. Electron and Hole Mobilities as a Function of Concentration and Temperature. IEEE Transactions on Electron Devices, Vol. 29 (1982), No. 2, S. 292–295

    Article  Google Scholar 

  2. Ashcroft, N.W.; Mermin, N.D. Solid State Physics. Saunders College

    Google Scholar 

  3. Askerov, B.M. Electron Transport Phenomena in Semiconductors. World Scientific Publishing, Singapore, New Jersey, London, Hongkong, 1. Auflage, 1994

    Google Scholar 

  4. Baliga, B.J. Optimum Semiconductor for High Power Electronics. IEEE Electron Device Letters, Vol. 10 No. 10, S. 455–457, October 1989

    Article  Google Scholar 

  5. Blakemore, J.S. Solid State Physics. Cambridge University Press 1988

    Google Scholar 

  6. Bludau, W.; Onton, A.; Heinke, W. Temperature Dependence of the Band Gap in Silicon. J. Appl. Phys, 45(4):1846–48, April 1974

    Article  Google Scholar 

  7. Boras, R.; Aloisi, P.; et al. Avalanche Capability of Todays Power Semiconductors. EPE 1993 Brighton, S. 167–172

    Google Scholar 

  8. Bronstein, I.N.; Semendjajew, K.A. Taschenbuch der Mathematik. Harri Deutsch, Thun und Frankfurt, 19. Auflage, 1981

    Google Scholar 

  9. Brooks, H. Scattering by Ionized Impurities in Semiconductors. Phys. Rev. 83, 1951, S. 879

    Google Scholar 

  10. Callen, H. B. Thermodynamics and an Introduction to Thermostatistics. John Wiley & Sons, New York, 1985, § 14-5

    MATH  Google Scholar 

  11. Canali, C.; Majni, G.; Minder, R.; Ottaviani, G. Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature. IEEE Transactions on Electron Devices (ED-22), 1975, S. 1045–1047

    Google Scholar 

  12. Caughey, D.; Thomas, R. Carrier Mobilities in Silicon Empirically Related to Doping and Field. Phys. Rev., Vol. 109 (1958), No. 5, S. 388–390

    Google Scholar 

  13. Chih Hsin Wang; Konstantinos Misiakos; Neugroschel, A. Temperature Dependence of Minority Hole Mobility in Heavily Doped Silicon. Appl. Phys. Lett., 57, S. 159–161, 1990

    Article  Google Scholar 

  14. Conwell, E.; Weisskopf, V.F. Theory of Impurity Scattering in Semiconductors. Phys. Rev. 77, 1950, No. 3, S. 388–390

    Article  MATH  Google Scholar 

  15. Dannhauser, F. Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freuen Ladungsträger-Part I Solid-State Electronics, Vol. 15 (1972), No. 12, S. 1371–1375

    Article  Google Scholar 

  16. Debye, P.P.; Conwell, E.M. Electrical Properties of N-Type Germanium. Phys. Rev. 93, 1950, S. 693–706

    Article  Google Scholar 

  17. Dorkel, J.M.; Leturcq, Ph. Carrier Mobilities in Silicon Semiempirically Related to Temperature, Doping and Injection Level. Solid-State Electronics, Vol. 24 (1981), No. 9, S. 821–825

    Article  Google Scholar 

  18. Evans, R.C. Einführung in die Kristallchemie. Walter de Gruyter

    Google Scholar 

  19. Fischetti, M.V. Effect of the Electron-Plasmon Interaction on the Electron Mobility in Silicon. Phsy. Rev. B, Vol. 44, Nb. 11, S. 5527–5534, 1991

    Article  Google Scholar 

  20. Fossum, J. G.; Lee, D. S. A Physical Model for The Dependence of Carrier Lifetime on Doping Density in Degenerate Silicon. Solid State Electronics, Vol. 25, No. 8, S. 741–747, 1982

    Article  Google Scholar 

  21. Fossum, J. G.; Martens, R. P.; et al. Carrier Recombination and Lifetime in Highly Doped Silicon. Solid State Electronics, Vol. 26, No. 6, S. 569–576, 1983

    Article  Google Scholar 

  22. Goebel, H.; Hoffmann, K. Full Dynamic Power Diode Model Including Temperature Behavior for Use in Circuit Simulators. Proc. of the ISPSD 1992, Tokyo, Japan, 1992

    Google Scholar 

  23. Green, M.A. Intrinsic Concentration, Effective Densities of States, and Effective Mass in Silicon J. Appl. Phys., 67(6):2944–43,2954, March 1990

    Article  Google Scholar 

  24. Gresserov, B.N.; Mnatsakanov, T.T. Estimate of the Role of the Electron-Hole Scattering in the Transport of Carriers in Multilayer Gallium Arsenide Structures. Sov. Phys. Semicond., 24(6) (Sept. 1990), S. 1042–43

    Google Scholar 

  25. Hess, K. Advanced Theory of Semiconductor Devices. Englewood Cliffs, Prentice Hall, 1988

    Google Scholar 

  26. Höpfel, R.A.; Shah, J.; Wolff, P.A.; Cossard, A.C. Electron-Hole Scattering in GaAs Quantum Wells. Phys. Rev. B, Vol. 37,12, S. 6941–6954, 1988

    Article  Google Scholar 

  27. Höpfel, R.A.; Shah, J.; Wolff, P.A.; Gossard, C.G. Negative Absolute Mobility of Electrons GaAs Quantum Wells. Phys. Rev. Lett., Vol. 56,25, S. 2736–2739, 1986

    Article  Google Scholar 

  28. ISE, Integrated Systems Engineering AG Dessis Reference Manual, Version 1.3 ISE, ETH-Zentrum, Gloriastraße 35, CH-8092 Zürich, Switzerland, 1994

    Google Scholar 

  29. Kane, D.E.; Swanson, R.M. Effect of Electron-Hole Scattering on the Current Flow in Semiconductors. J. Appl. Phys., 72, S. 5294–5304, 1992

    Article  Google Scholar 

  30. Kittel, Ch. Einführung in die Festkörperphysik. Oldenburg Verlag, 9. Auflage, 1991

    Google Scholar 

  31. Krausse, J. Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger-Part II. Solid-State Electronics, Vol. 15 (1972), No., S. 1377–1381

    Article  Google Scholar 

  32. Krishna; Shenai, K. Potential Impact of Emerging Semiconductor Technolgies on Advanced Power Systems. IEEE Electron Device Letters, Vol. 11, No. 11, S. 520–522, November 1990

    Article  Google Scholar 

  33. Lang, J.E.; Madarasz; Hemeger, P.M. Temperature Dependent Density of States Effective Mass in Non-Parabolic p-Type Silicon. J. Appl. Phys., 54(6): 3612, 1983

    Article  Google Scholar 

  34. Lanyon, H.P.D.; Tuft, R.A. Bandgap Narrowing in Heavily Doped Silicon. IEEE Tech. Dig., Int. Electron Device Meeting (1978), S. 316

    Google Scholar 

  35. Macfarlane, G.G.; McClean, T.P.; Quarrington, J.E.; Roberts, V. Fine Structure in the Absorption-Edge Spectrum of Silicon. Phys. Rev., 111(5):1245–54, September 1958

    Article  Google Scholar 

  36. Madelung, O. Halbleiter. Handbuch der Physik, Hrg. S. Flügge, Band XX, „Elektrische Leitungsphänomene II“, Springer Verlag, Berlin

    Google Scholar 

  37. Marx, M.; Schlögl, A.; Eder, K.; Schröder, D. Comparison of Zero-Voltage-Switching Converters at Low Temperatures. PESC’96, Baveno, Italy, 1996, Proceedings S. 83–88.

    Google Scholar 

  38. Miller, S.L. Ionisation Rates for Electrons and Holes in Silicon. Phys. Rev. 105 (1957), S. 1246–1249

    Article  Google Scholar 

  39. Mnatsakanov, T.T.; Gresserov, B.N.; Pomortseva, L.I. Investigation of the Effect of Electron-Hole Scattering on Charge Carrier Transport in Semiconductors and Semiconductor Devices Under Low Injection Conditions. Solid State Electronics, Vol. 38 (1995), No. 1, S. 225–233

    Article  Google Scholar 

  40. Mnatsakanov, T.T.; Rostovtsev, I.L.; Philatov, N.I. Investigation of the Effect of Nonlinear Physical Phenomena on Charge Carrier Transport in Semiconductor Devices. Solid State Electronics, Vol. 30 (1987), No. 6, S. 579–585

    Article  Google Scholar 

  41. Mnatsakanov, T.T. Transport Coefficients and Einstein Relation in a High Density Plasma of Solids. Phys. Stat. Sol., 143, S. 225–234, 1987

    Article  Google Scholar 

  42. Mott, M.F. Proc. R. Soc. London A382,1 (1982)

    Google Scholar 

  43. E.H. Nicollian, J.R. Brews MOS Physics and Technology. John Wiley and Sons

    Google Scholar 

  44. Onsager, L. Reciprocal Relations in Irreversible Processes I. Physical Review, Vol. 37, S. 405, 1931

    Article  MATH  Google Scholar 

  45. Overstraeten, R.; Man, D. Measurement on the Ionization Rates in Diffused Silicon p-n Junctions. Solid-State Electronics, Vol. 13 (1970), No. 5, S. 583–608

    Article  Google Scholar 

  46. Pires, R.G.; Dickstein, R.M.; Titcomb, S.L.; Anderson, R.L. Carrier Freezeout in Silicon. Cryogenics, 30:1064–68, December 1990

    Article  Google Scholar 

  47. Sanseverino, A.; Spirito, P. The Effect of Recombination Centers on the Lifetime Dependence upon Temperature and Injection Level. EPE 1993 Brighton, S. 58–62

    Google Scholar 

  48. Schlögl, A.E. Theorie und Validierung der Modellbildung bipolarer Leistungshalbleiter im Temperaturbereich von 100K bis 400K. Dissertation, TU München, 1999

    Google Scholar 

  49. Schlögl, A.E.; Mnatsakanov, T.T.; Kuhn, H.; Schröder, D. Temperature Dependent Behaviour of Silicon Power Semiconductors — A New Physical Model Validated by Device-Internal Probing Between 400K and 100K. PESC 1998, Kyoto, Japan, 1998, S. 1720–1725

    Google Scholar 

  50. Schroder, D.K. Carrier Lifetimes in Silicon. IEEE Transactions on Electron Devices, Vol. 44 (1997), No. 1, S. 160–170

    Article  Google Scholar 

  51. Shockley, W.; Read W. Electrons and Holes in Semiconductors. D. Van Nostrand, Princeton 1950

    Google Scholar 

  52. Shockley, W.; Read W. Statistics of Recombination of Holes and Electrons. Phys. Review 1952

    Google Scholar 

  53. Selberherr, S. Analysis and Simulation of Semiconductor Devices. Springer Verlag, Berlin, 1984

    Google Scholar 

  54. Shenai, K.; Scott, R.S.; et al. Optimum Semiconductors for High Power Electronics. IEEE Trans. Electron Dev., ED-36, S. 1811–1823, Sept. 1989

    Article  Google Scholar 

  55. Slotboom, J.W.; DeGraaf, H.C: Bandgap Narrowing in Silicon Bipolar Transistors. IEEE Transactions on Electron Devices, Vol. 24 (1977), No. 4, S. 1123–1125

    Article  Google Scholar 

  56. Sze, S. Physics of Semiconductor Devices. John Wiley and Sons 1981, Springer Verlag, Berlin, 1984

    Google Scholar 

  57. Vogler, T.; Schlögl, A.; Schröder, D. Modeling and Characterizing Power Semiconducters at Low Temperatures. ISPSD 1994 Davos, S. 237–242

    Google Scholar 

  58. Vogler, T.; Schlögl, A.: Kasahara, N. Modelling and Characterizing Power Semiconductors at Low Temperatures. International Power Electronics Conference, IPEC’ 95, 1995, Yokohama, Japan, Proceedings Vol. 3, S. 1232–1238

    Google Scholar 

  59. Wachutka, G. Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling. IEEE Trans. on Computer Aided Design (CAD), Vol. 9, S. 1141, 1990

    Article  Google Scholar 

  60. Wachutka, G. Unified Framework for Thermal, Electrical, Magnetic and Optical Semiconductor Device Modeling. Trans. NASECODE VII, Vol. 10, No. 4, 1991

    Google Scholar 

  61. Wachutka, G. Tailored Modeling of Miniaturized Electromechanical Systems Using Thermodynamic Methods. The American Society of Mechanical Engineers, DSC-Vol. 40, Book No. G00743, S. 183–198, 1992

    Google Scholar 

  62. Wachutka, G. Consistent Treatment of Carrier Emission and Capture Kinetics in Electrothermal and Energy Transport Models. Microelectronics Journal, 26, S. 307–315, 1995

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Halbleiterphysik. In: Leistungselektronische Bauelemente. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31735-X_2

Download citation

Publish with us

Policies and ethics