Advertisement

Physikalische Modelle für die Schaltungssimulation

Chapter
  • 4.3k Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 11 Physikalische Modelle für die Schaltungssimulation

  1. [823]
    Biela, J. Erstellung, Untersuchung und Implementierung von Konzepten zur aktiven Ansteuerung von seriengeschalteten IGCT-Bauelementen. Diplomarbeit, Universität Erlangen-Nürnberg, angefertigt an der Technischen Universität München, Lst. für Elektrische Antriebssysteme, 2000Google Scholar
  2. [824]
    Eicher, S. The Transparent Anode GTO (TGTO): A New Low-Loss Power Switch. Dissertation, ETH Zürich, 1996Google Scholar
  3. [825]
    Eicher, S.; Bernet, S.; Steimer, P.; Weber, A.: The 10 kV IGCT — A New Device for Medium Voltage Drives. Proc. of IAS, Rom, Italien, 2000Google Scholar
  4. [826]
    Gerster, C. Fast High-Power/High-Voltage Switch Using Series-connected IGBTs with Active Gate-controlled Voltage-balancing. Proc. of APEC, Orlando, USA, 1994Google Scholar
  5. [827]
    Goebel, H.; Hoffmann, K. Full Dynamic Power Diode Model Including Temperature Behavior for Use in Circuit Simulators. Proc. of ISPSD, Tokio, Japan, 1992Google Scholar
  6. [828]
    Heffner, A.R. Modeling Buffer Layer IGBTs for Circuit Simulation. IEEE Transactions of Power Electronics, Vol. 2, No. 3, March 1995, S. 111–123CrossRefGoogle Scholar
  7. [829]
    Kuhn, H. Modellierung von lateralen Effekten am Beispiel der SPEED-Struktur. Diplomarbeit, Technische Universität München, Lst. für Elektrische Antriebssysteme, 1996Google Scholar
  8. [830]
    Kuhn, H. Physikalische Modellbildung von IGCTs für die Schaltungssimulation. Dissertation, Technische Universität München, 2002Google Scholar
  9. [831]
    Kuhn, H.; Schröder, D. Physikalische Modellierung von GTO-Thyristoren mit Pufferschicht für hartschaltende Anwendungen. 26. Kolloquium „Halbleiter-Leistungsbauelemente und Materialgüte von Silizium“, Freiburg, Germany, 1997, S. 19.1–19.8Google Scholar
  10. [832]
    Kuhn, H.; Schröder, D. Validierung eines physikalisch basierten IGCT-Netzwerkmodells anhand des statischen und dynamischen Verhaltens. 28. Kolloquium „Halbleiter-Leistungsbauelemente und Materialgüte von Silizium“, Freiburg, Germany, 1999, S. 5.1–5.8Google Scholar
  11. [833]
    Kuhn, H.; Schröder, D. Circuit Simulation of Hard-Driven IGCT for Snubberless Operation using a Physically Based Model. Proc. of IEEE-IPEC 2000, Tokyo, Japan, 2000, S. 2002–2007Google Scholar
  12. [834]
    Kuhn, H.; Schröder, D. A New Validated Physically Based IGCT Model for Circuit Simulation of Snubberless and Series Operation. Proc. of IEEE-IAS, Rome, Italy, 2000, S. 2866–2872; IEEE Trans. on Industry Applications, Vol. IA-38 (2002), No. 6, S. 1606–1612Google Scholar
  13. [835]
    Kuhn H.; Schröder, D. Investigation of an Active Gate Drive Concept for Series Connected GCTs. Proc. of PCC, Osaka, Japan, 2002Google Scholar
  14. [836]
    Ma, C.L.; Lauritzen, P.O.; Sigg, J. A Physics-based GTO Model For Circuit Simulation. Proc. of PESC, Atlanta, USA, 1995.Google Scholar
  15. [837]
    Ma, C.L.; Sigg, J. Modelling of Power Diodes with Lumped-Charge Modeling Technique. IEEE Transactions on Power Electronics, Vol. 12, No. 3, S. 398–405, May 1997CrossRefGoogle Scholar
  16. [838]
    Metzner, D. Netzwerkmodelle abschaltbarer Leistungshalbleiter-Bauelemente. Dissertation, TU München, 1994Google Scholar
  17. [839]
    Metzner, D.; Vogler, Th.; Schröder, D. A Modular Concept for the Circuit Simulation of Bipolar Power Semiconductors. IEE EPE Record, Vol. 2, S. 15–22, 1993. IEEE Transactions on Power Electronics, Vol. 9 (1994), Nr. 5, S. 506–513Google Scholar
  18. [840]
    Metzner, D.; Schröder, D. A SITh-Model for CAE in Power Electronics. IPEC 90, Tokio, Japan, April 1990, S. 1064–1060Google Scholar
  19. [841]
    Metzner, D.; Schröder, D. A Non-Quasistatic FCTh-Model for Circuit Simulation. MADEP 91, Florenz, Sept. 1991, S. 0-346–0-351Google Scholar
  20. [842]
    Metzner, D.; Schröder, D. A Physical GTO-Model for Circuit Simulation. IEEE-IAS 1992, Houston, USA, S. 1066–1073.Google Scholar
  21. [843]
    Metzner, D.; Schäfer, J.; Xu, Ch. Multi Domain Behavioral Models of Smart-Power ICs for Design Integration in Automotive Applications. Proceedings of the IEEE International Workshop on Behavioral Modeling and Simulation BMAS 2001, Santa Rosa CA, USA, S. 84–89Google Scholar
  22. [844]
    Metzner, D.; Schäffner, C.; Xu, Ch. Verhaltensmodelle von Smart Power Switches — Ein Beitrag zur effizienten Systementwicklung. 10ter Internationaler Kongress Elektronik im Kraftfahrzeug, Baden-Baden, Germany, September 2001Google Scholar
  23. [845]
    Metzner, D.; Schäfer, J. Integrated Mechatronic Design and Simulation of a Door Soft Close Automatic with Behavioral Models of Smart Power ICs. Society of Automotive Engineers (SAE) Conference 2002Google Scholar
  24. [846]
    Metzner, D.; Schäfer, J. Architecture Development of Mixed Signal ICs for Automotive Application with VHDL-AMS. Proceedings of the IEEE International Workshop on Behavioral Modeling and Simulation BMAS 2002, Santa Rosa CA, USA, S. 7–13Google Scholar
  25. [847]
    Metzner, D.; Schäfer, J.; et al. Investigations of a Direct Injection System with a „Simulatable Specification“ of Smart Bridge Driver ICs. Society of Automotive Engineers (SAE) Conference 2003Google Scholar
  26. [848]
    Mnatsakanov, T.T.; Schröder, D.; Schlögl, A.E. Effect of high injection level phenomena on the feasibility of diffusive approximation in semiconductor device modeling. Solid-State Electron., 42(1) (1998), S. 153–163CrossRefGoogle Scholar
  27. [849]
    Ogura, T.; Kitagawa, M.; Nakagawa, A.; Ohashi, H. 6000 V Gate Turn-Off Thyristors GTOs with n-Buffer and New Anode Short Structure. IEEE Transactions on Electron Device, Vol. 38, No. 6, June 1991, S. 1491–1496CrossRefGoogle Scholar
  28. [850]
    Palmer, P.; Githiari, A. The Series Connection of IGBTs with optimised Voltage Sharing in the Switching Transient. Proc. of PESC, S. 44–50, Atlanta, USA, 1995Google Scholar
  29. [851]
    Reinmuth, K.; Xu, Ch. Experimental Investigation, Simulation and Analyses of Avalanche Effects on Power MOSFETs. PESC 90, San Antonio, Texas, USA Juni 1990, S. 120–125Google Scholar
  30. [852]
    Reisch, M. Elektronische Bauelemente. Springer Verlag, Berlin, 1. Auflage, 1997Google Scholar
  31. [853]
    Schlögl, A.E. Theorie und Validierung der Modellbildung bipolarer Leistungshalbleiter im Temperaturbereich von 100 K bis 400 K. Dissertation, Technische Universität München, 1999Google Scholar
  32. [854]
    Schröder, D. Computer-Aided Engineering Models for the Design of Electrical Actuators. ETZ-Archiv 1990, Nr. 11. S. 341–348Google Scholar
  33. [855]
    Schröder, D. Modelling of Power Devices for CAE. MADEP 91, Florenz, Sept. 1991, S. 0-331–0-338Google Scholar
  34. [856]
    Schröder, D. Simulation of Power Electronic Circuits. Inter. Conf. on Power Electronis (ICPE), Oct. 1998, Seoul, Korea, Proc. of ICPE 98, S. 212–218Google Scholar
  35. [857]
    Schröder, D. Emerging Power Electronic Devices, Physical Modelling and CAE. Invited Paper at PEMC’ 98, Prague, Czech Republic, 1998Google Scholar
  36. [858]
    Sheng, A.G.M.; Williams, B.W. A Review of IGBT Models. IEEE Trans. on Power Electronics, Vol. 15 (2000), No. 6, S. 1250–1266CrossRefGoogle Scholar
  37. [859]
    Sigg, J.; Türkes, J.; Kraus, R. Parameter Extraction Methodology and Validation for an Electro-Thermal Physics-Based NPT IGBT Model. Proc. of IEEE IAS Annual Meeting, New Orleans, USA, 1997Google Scholar
  38. [860]
    Stein, E. Elektrische Modelle von Leistungshalbleitern für den Entwurf von Stromrichterstellgliedern. Dissertation, Kaiserslautern, 1984Google Scholar
  39. [861]
    Stein, E.; Schröder, D. CAD für MOSFET, Ergebnisse einer Brückensimulation. Makroelektronik-Konferenz, München, 1984 S. 223–239Google Scholar
  40. [862]
    Tan, C.M.; Tseng, K. Using Power Diode Models for Circuit Simulation — A Comprehensive Review. IEEE Transactions on Industrial Applications, Vol. 46, No. 3, June 1999, S. 637–645Google Scholar
  41. [863]
    Vogler, T. Physikalische Netzwerkmodelle von Leistungshalbleitern unter Berücksichtigung von Modularität und Temperatur. Dissertation, TU München, 1996Google Scholar
  42. [864]
    Vogler, T.; Schlögl, A.; Schröder, D. Modeling and Characterizing Power Semiconducters at Low Temperatures. ISPSD 1994 Davos, S. 237–242Google Scholar
  43. [865]
    Vogler, T.; Schlögl, A.; Kasahara, N. Modelling and Characterizing Power Semiconductors at Low Temperatures. International Power Electronics Conference, IPEC 1995, Yokohama, Japan, Proc. Vol. 3, S. 1232–1238Google Scholar
  44. [866]
    Vogler, Th.; Schröder, D. A New and Accurate Circuit Modelling Approach for the Power Diode. IEEE PESC Record, 1992, S. 871–876Google Scholar
  45. [867]
    Vogler, Th.; Schröder, D. Physical Modeling of Power Semiconductors for the CAE-Design of Power Electronic Circuits. Journal on Circuits, Systems and Computers, Vol. 5 (1995), No. 3, S. 411–428CrossRefGoogle Scholar
  46. [868]
    Ward, D.; Dutton, R. A Charge-Oriented Model for MOS Transistor Capacitances. IEEE Journal of Solid-State Circuits, S. 703–708, 1978Google Scholar
  47. [869]
    Xu, Ch. Netzwerkmodelle von Leistungshalbleiter-Bauelementen (Diode, BJT und MOSFET). Dissertation, TU München, 1990Google Scholar
  48. [870]
    Xu, Ch.; Schröder, D. Modelling and Simulation of Power MOSFETs and Power Diodes. PESC 88, Kyoto, Japan, April 1988, S. 76–83Google Scholar
  49. [871]
    Xu, Ch.; Schröder, D. A Unified Model for the Power MOSFET Including the Inverse Diode and the Parasitic Bipolar Transistor. EPE 89, Aachen, Oktober 1989, S. 139–143Google Scholar
  50. [872]
    Xu, Ch.; Schröder, D. A Power Bipolar Junction Transistor Model Describing the Static and the Dynamic Behaviours. PESC 89, Wisconsin, USA, Juni 1989, S. 314–321.Google Scholar
  51. [873]
    Yammamoto, M.; Kurachi, K.; Satoh, K.; Iwamoto, H. Novel characteristics of SGCT (Symmetrical GCT). Proc. of IPEC, Tokio, Japan, 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • H. Kuhn
    • 1
  1. 1.Siemens AG A&D LDNürnberg

Personalised recommendations