Skip to main content

Nonlinear Conservation Laws and Finite Volume Methods

  • Chapter

Part of the book series: Saas-Fee Advanced Courses ((SAASFEE,volume 27))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abramovici et al. Graviational wave astrophysics. In E. W. Kolb and R. D. Peccei, editors, Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, Proc. 1994 Snowmass Summer School, pages 398–425. World Scientific, 1994.

    Google Scholar 

  2. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher. Computational Fluid Mechanics and Heat Transfer. McGraw-Hill, 1984.

    Google Scholar 

  3. A. M. Anile. Relativistic Fluids and Magneto-Fluids. Cambridge University Press, Cambridge, 1989.

    MATH  Google Scholar 

  4. P. Anninos, G. Daues, J. Massó, E. Seidel, and W.-M. Suen. Horizon boundary conditions in numerical relativity. Physical Review D, 51:5562–5578, 1995.

    Article  ADS  MathSciNet  Google Scholar 

  5. P. C. Argyres. Universality and scaling in black hole formation. In E. W. Kolb and R. D. Peccei, editors, Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, Proc. 1994 Snowmass Summer School, pages 447–449. World Scientific, 1994.

    Google Scholar 

  6. R. Arnowitt, S. Deser, and C. W. Misner. The dynamics of general relativity. In L. Witten, editor, Gravitation: An Introduction to Current Work, pages 227–265, New York, 1962. Wiley.

    Google Scholar 

  7. M. Arora and P. L. Roe. On postshock oscillations due to shock capturing schemes in unsteady flow. J. Comput. Phys., 130:1–24, 1997.

    Article  MathSciNet  Google Scholar 

  8. N. Aslan. Computational investigations of ideal MHD plasmas with discontinuities. PhD thesis, University of Michigan, Nuclear Eng. Dept., 1993.

    Google Scholar 

  9. N. Aslan. Numerical solutions of one-dimensional MHD equations by a fluctuation approach. Int. J. Numer. Meth. Fluids, 22:569–580, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Aslan. Two dimensional solutions of MHD equations with a modified Roe’s method. Int. J. Numer. Meth. Fluids, in print, 1996.

    Google Scholar 

  11. N. Aslan and T. Kammash. A Riemann solver for two dimensional MHD equations. Int. J. Numer. Meth. Fluids, to appear, 1997.

    Google Scholar 

  12. Martin Bailyn. A Survey of Thermodynamics. American Institute of Phyisics Press, Woodbury, NY, 1994.

    Google Scholar 

  13. D. Balsara. Modern schemes for solving hyperbolic conservation laws of interest in computational astrophysics on parallel machines. In D. A. Clarke, editor, Halifax Conference on Computational Astrophysics, 1996.

    Google Scholar 

  14. D. S. Balsara. Riemann solver for relativistic hydrodynamics. J. Comput. Phys., 114:284–297, 1994.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. D. S. Balsara. Linearized formulation of the Riemann problem for adiabatic and isothermal magnetohydrodynamics. Astrophys. J., to appear.

    Google Scholar 

  16. F. Banyuls, J. A. Font, J. M. Ibáñez, J. M. Martí, and J. A. Miralles. Numerical 3 + 1 general-relativistic hydrodynamics: a local characteristic approach. Astrophysical J., pages 221–231, 1997.

    Google Scholar 

  17. A. A. Barmin, A. G. Kulikovskiy, and N. V. Pogorelov. Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics. J. Comput. Phys., 126:77–90, 1996.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. E. Battaner. Astrophysical Fluid Dynamics. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  19. J. Bell, M. J. Berger, J. Saltzman, and M. Welcome. Three dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Stat., 15:127–138, January 1994.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. J. B. Bell, P. Colella, and J. R. Trangenstein. Higher order Godunov methods for general systems of hyperbolic conservation laws. J. Comput. Phys., 82:362, 1989.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. J. B. Bell, C. N. Dawson, and G. R. Shubin. An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions. J. Comput. Phys., 74:1–24, 1988.

    Article  MATH  ADS  Google Scholar 

  23. J. B. Bell and D. L. Marcus. A second-order projection method for variable-density flows. J. Comput. Phys., 101:334–348, 1992.

    Article  ADS  MATH  Google Scholar 

  24. M. Ben-Artzi. The generalized Riemann problem for reactive flows. J. Comput. Phys., 81:70–101, 1989.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. M. Berger. Adaptive mesh refinement for hyperbolic partial differential equations. PhD thesis, Computer Science Deptartment, Stanford University, 1982.

    Google Scholar 

  26. M. Berger and A. Jameson. Automatic adaptive grid refinement for the Euler equations. AIAA J., 23:561–568, 1985.

    Article  ADS  Google Scholar 

  27. M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53:484–512, 1984.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82:64–84, 1989.

    Article  ADS  MATH  Google Scholar 

  29. M. J. Berger and R. J. LeVeque. AMRCLAW software. A test version is available at http://www.amath.washington.edu/~rj1/amrclaw/.

    Google Scholar 

  30. M. J. Berger and R. J. LeVeque. Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal., to appear.

    Google Scholar 

  31. P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases I. small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94:511, 1954.

    Article  ADS  MATH  Google Scholar 

  32. J. M. Blondin and B. S. Marks. Evolution of cold shock-bounded slabs. New Astronomy, 1:235–244, 1996.

    Article  ADS  Google Scholar 

  33. C. Bona, J.M. Ibáñez, J.M. Martí, and J. Massó. Shock capturing methods in 1D numerical relativity. In F. Chinea, editor, Gravitation and General Relativity: rotating bodies and other topics, Lecture Notes in Physics, Vol. 423. Springer-Verlag, 1993.

    Google Scholar 

  34. C. Bona and J. Massó. A hyperbolic evolution system for numerical relativity. Phys. Rev. Letters, 68:1097, 1992.

    Article  ADS  MATH  Google Scholar 

  35. C. Bona and J. Massó. Numerical relativity: Evolving spacetime. International Journal of Modern Physics C: Phys. and Computers, 4:883, 1993.

    Article  ADS  MATH  Google Scholar 

  36. C. Bona, J. Massó, E. Seidel, and J. Stela. A new formalism for numerical relativity. Phys. Rev. Lett., 75:600, 1995.

    Article  ADS  Google Scholar 

  37. J. P. Boris and D. L. Book. Flux corrected transport I, SHASTA, a fluid transport algorithm that works. J. Comput. Phys., 11:38–69, 1973.

    Article  ADS  Google Scholar 

  38. A. Bourlioux. Numerical Study of Unstable Detonations. PhD thesis, Princeton University, June, 1991.

    Google Scholar 

  39. A. Bourlioux and A. J. Majda. Theoretical and numerical structure of unstable detonations. Phil. Trans. R. Soc. Lond. A, 350:29–68, 1995.

    Article  ADS  MATH  Google Scholar 

  40. J. U. Brackbill and D. C. Barnes. The effect of nonzero ∇·B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys., 35:426–430, 1980.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. W. L. Briggs. A Multigrid Tutorial. SIAM, 1987.

    Google Scholar 

  42. M. Brio and P. Rosenau. Stability of shock waves for 3 x 3 model MHD equations. Fourth Intl. Conf. Hyperbolic Prob., Taormina, 1992.

    Google Scholar 

  43. M. Brio and P. Rosenau. Evolution of the fast-intermediate shock wave in an MHD model problem. preprint, 1997.

    Google Scholar 

  44. M. Brio and C. C. Wu. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 75:400–422, 1988.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Tung Chang and Ling Hsiao. The Riemann Problem and Interaction of Waves in Gas Dynamics. John Wiley and Sons Inc., New York, 1989.

    MATH  Google Scholar 

  46. M. Choptuik. Experiences with an adaptive mesh refinement algorithm in numerical relativity. In C. R. Evans, L. S. Finn, and D. W. Hobill, editors, Frontiers in Numerical Relativity. Cambridge University Press, 1989.

    Google Scholar 

  47. M. Choptuik. Consistency of finite-difference solutions of Einstein’s equations. Phys. Rev. D, 44:3124–3135, 1991.

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Choptuik. Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett., 70:9–12, 1993.

    Article  ADS  Google Scholar 

  49. M. W. Choptuik. Critical behaviour in massless scalar field collapse. In R. d’Inverno, editor, Approaches to Numerical Relativity, page 202. Cambridge University Press, 1992.

    Google Scholar 

  50. Y. Choquet-Bruhat and J. W. York, Jr. Geometrical well-posed systems for the Einstein equations. C. R. Acad. Sci. Paris, A321:1089–1095, 1995.

    MathSciNet  Google Scholar 

  51. A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745–762, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  52. A. J. Chorin. Random choice solution of hyperbolic systems. J. Comput. Phys., 22:517–533, 1976.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, 1979.

    Google Scholar 

  54. P. Colella. Glimm’s method for gas dynamics. SIAM J. Sci. Stat. Comput., 3:76–110, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  55. P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput., 6:104–117, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  56. P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys., 87:171–200, 1990.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem for real gases. J. Comput. Phys., 59:264–284, 1985.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. P. Colella, A. Majda, and Y. Roytburd. Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Stat. Comput., 7:1059–1080, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  59. P. Colella and P. Woodward. The piecewise-parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54:174–201, 1984.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves. Springer, 1948.

    Google Scholar 

  61. R. Courant, K. O. Friedrichs, and H. Lewy. über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 100:32–74, 1928.

    Article  MathSciNet  MATH  Google Scholar 

  62. T. G. Cowling. Magnetohydrodynamics. Adam Hilger, The Institute of Physics, Bristol, England, 1976.

    MATH  Google Scholar 

  63. W. Dai and P. R. Woodward. On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamical flows. preprint.

    Google Scholar 

  64. W. Dai and P. R. Woodward. An approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys., 111:354–372, 1994.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. W. Dai and P. R. Woodward. A high-order Godunov-type scheme for shock interactions in ideal magnetohydrodynamics. SIAM J. Sci. Comput., 18:957–981, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  66. W. Dai and P. R. Woodward. An iterative Riemann solver for relativistic hydrodynamics. SIAM J. Sci. Comput., 18:982–995, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  67. M. B. Davies, M. Ruffert, W. Benz, and E. Müller. A comparison between SPH and PPM: simulations of stellar collisions. Astron. Astrophys., 272:430–441, 1993.

    ADS  Google Scholar 

  68. D. L. De Zeeuw, A. F. Nagy, T. I. Gombosi, K. G. Powell, and J. G. Luhmann. A new axisymmetric MHD model of the interaction of the solar wind with Venus. J. Geophys. Res., 101:4547–4556, 1996.

    Article  ADS  Google Scholar 

  69. R. DeVore. Transport techniques for multidimensional compressible magnetohydrodynamics. J. Comput. Phys., 92:142, 1991.

    Article  ADS  MATH  Google Scholar 

  70. Ruth Dgani, Rolf Walder, and Harry Nussbaumer. Stability analysis of colliding winds in a double star system. Astron. Astrophys., 278:209–225, 1993.

    ADS  Google Scholar 

  71. W. G. Dixon. Special Relativity. Cambridge University Press, Cambridge, 1978.

    MATH  Google Scholar 

  72. R. Donat. Studies on error propagation for certain nonlinear approximations to hyperbolic equations: discontinuities in derivatives. SIAM J. Numer. Anal., 31:655–679, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  73. R. Donat and A. Marquina. Capturing shock reflections: an improved flux formula. J. Comput. Phys., 125:42–58, 1996.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  74. E. A. Dorfi and M. U. Feuchtinger. Adaptive radiation hydrodynamics of pulsating stars. Computer Phys. Comm., 89:69–90, 1995.

    Article  ADS  MATH  Google Scholar 

  75. G. C. Duncan and P. A. Hughes. Simulations of relativistic extragalactic jets. Astrophysical J., 436:L119–L122, 1994.

    Article  ADS  Google Scholar 

  76. V. Dwarkadas, R. Chevalier, and J. Blondin. The shaping of planetary nebulae: Asymmetry in the external wind. Astrophys. J., 457:773, 1996.

    Article  ADS  Google Scholar 

  77. Carl Eckart. The thermodynamics of irreversible processes. Phys. Rev., 58:919–924, 1940.

    Article  ADS  MATH  Google Scholar 

  78. B. Einfeldt. On Godunov-type methods for gas dynamics. SIAM J. Num. Anal., 25:294–318, 1988.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  79. B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjogreen. On Godunov type methods near low densities. J. Comput. Phys., 92:273–295, 1991.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. P. G. Eltgroth. Similarity analysis for relativistic flow in one dimension. Phys. Fluids, 14:2631, 1971.

    Article  MATH  ADS  Google Scholar 

  81. B. Engquist and S. Osher. Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp., 34:45–75, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  82. R. Eulderink and G. Mellema. General relativistic hydrodynamics with a Roe solver. Astron. Astrophys. Suppl. Ser., 110:587–623, 1995.

    ADS  Google Scholar 

  83. T. E. Faber. Fluid Dynamics for Physicists. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  84. J. Falcovitz and M. Ben-Artzi. Recent developments of the GRP method. JSME International J. Series B, 38:497–517, 1995.

    Google Scholar 

  85. M. Fey, R. Jeltsch, and A.-T. Morel. Multidimensional schemes for nonlinear systems of hyperbolic conservation laws. In D. F. Griffiths and G. A. Watson, editors, 16th Biannual Dundee Conference on Numerical Analysis, 1995. Longman, 1996.

    Google Scholar 

  86. C. A. J. Fletcher. Computational Techniques for Fluid Dynamics. Springer-Verlag, 1988.

    Google Scholar 

  87. J. A. Font, J. Ma. Ibäñez, A. Marquina, and J. Ma. Martc\aci. Multidimensional relativistic hydrodynamics: characteristic fields and modern high-resolution shock-capturing schemes. Astron. Astrophys, 282:304–314, 1994.

    ADS  Google Scholar 

  88. J. Foster and J. D. Nightingale. A Short Course in General Relativity. Springer-Verlag, New York, 1995.

    Google Scholar 

  89. A. Frank, T. W. Jones, and D. Ryu. Time dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model. Astrophys. J., 441:629, 1995.

    Article  ADS  Google Scholar 

  90. A. Frank and G. Mellema. From the owl to the eskimo: Radiation gasdynamics of planetary nebulae-IV. Astrophys. J., 430:800, 1994.

    Article  ADS  Google Scholar 

  91. H. Freistühler. Some remarks on the structure of intermediate magnetohydrodynamic shocks. J. Geophys. Res., 96:3825–3827, 1991.

    Article  ADS  Google Scholar 

  92. H. Freistühler and E. B. Pitman. A numerical study of a rotationally degenerate hyperbolic system, Part I: the Riemann problem. J. Comput. Phys., 100:306, 1992.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  93. H. Friedrich. Hyperbolic reductions for Einstein’s equations. Class. Quantum Grav., 13:1451–1469, 1996.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  94. Fryxell, E. Müller, and Arnett. Hydrodynamics and nuclear burning. MPA Report 449, 1989.

    Google Scholar 

  95. H. M. Glaz and T.-P. Liu. The asymptotic analysis of wave interactions and numerical calculations of transonic nozzle flow. Advances Appl. Math., 5:111–146, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  96. J. Glimm, G. Marshall, and B. Plohr. A generalized Riemann problem for quasi-one-dimensional gas flows. Advances Appl. Math., 5:1–30, 1984.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. E. Godlewski and P.-A. Raviart. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  98. S. K. Godunov. Mat. Sb., 47:271, 1959.

    MATH  MathSciNet  Google Scholar 

  99. T. I Gombosi, K. G. Powell, and D. L. De Zeeuw. Axisymmetric modelling of cometary mass loading on an adaptively refined grid. J. Geophys. Res., 99,A11: 21525–21539, 1994.

    Article  ADS  Google Scholar 

  100. J. B. Goodman and R. J. LeVeque. A geometric approach to high resolution TVD schemes. SIAM J. Num. Anal., 25:268–284, 1988.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  101. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.

    MATH  Google Scholar 

  102. F. H. Harlow and J. E. Welch. The MAC method: a computing technique for solving viscous, incompressible, transient fluid flow problems involving free surfaces. Phys. Fluids, 8:2182–2189, 1965.

    Article  ADS  MATH  Google Scholar 

  103. A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49:357–393, 1983.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  104. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high order accurate essentially nonoscillatory schemes, III. J. Comput. Phys., 71:231, 1987.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  105. A. Harten and J. M. Hyman. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys., 50:235–269, 1983.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  106. A. Harten, J. M. Hyman, and P. D. Lax. On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math., 29:297–322 (with appendix by Barbara Keyfitz), 1976.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. A. Harten and P. D. Lax. A random choice finite difference scheme for hyperbolic conservation laws. SIAM J. Num. Anal., 18:289–315, 1981.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  108. A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25:35–61, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  109. A. Harten and S. Osher. Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Num. Anal., 24:279–309, 1987.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  110. A. Harten and G. Zwas. Self-adjusting hybrid schemes for shock computations. J. Comput. Phys., 9:568, 1972.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  111. C. Hirsch. Numerical Computation of Internal and External Flows. Wiley, 1988.

    Google Scholar 

  112. H. T. Huynh. Accurate upwind methods for the Euler equations. SIAM J. Numer. Anal., 32:1565–1619, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  113. V. Icke, B. Balick, and A. Frank. The hydrodynamics of aspherical planetary nebulae. Astron. Astrophys., 253:224–243, 1991.

    ADS  Google Scholar 

  114. E. Isaacson, D. Marchesin, and B. Plohr. Transitional waves for conservation laws. SIAM J. Math. Anal., 21:837–866, 1990.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. A. Iserles. Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  116. W. Israel. Relativistic theory of shock waves. Proc. Roy. Soc. London, A259:129, 1960.

    ADS  MathSciNet  Google Scholar 

  117. J. D. Jackson. Classical Electrodynamics. John Wiley and Sons, Inc., New York, 1975.

    MATH  Google Scholar 

  118. A. Jeffrey and T. Taniuti. Non-linear Wave Propagation. Academic Press, 1964.

    Google Scholar 

  119. G. Jiang and C. W. Shu. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126:202–228, 1996.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  120. S. Jin. Implicit numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys., to appear.

    Google Scholar 

  121. S. Jin and J.-G. Liu. The effects of numerical viscosities: I. Slowly moving shocks. J. Comput. Phys., 126:373–389, 1996.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  122. Montgomery H. Johnson and Christopher F. McKee. Relativistic hydrodynamics in one dimension. Phys. Rev. D, 3:858–863, 1971.

    Article  ADS  Google Scholar 

  123. O. S. Jones, U. Shumlak, and D. S. Eberhardt. An implicit scheme for nonideal magnetohydrodynamics. J. Comput. Phys., 130:231–242, 1997.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  124. A. Kantrowitz and H. E. Petschek. MHD characteristics and shock waves. In W. B. Kunkel, editor, Plasma Physics in Theory and Application, pages 148–206. McGraw-Hill, 1966.

    Google Scholar 

  125. S. Karni and S. Canic. Computation of slowly moving shocks. J. Comput. Phys., to appear, 1997.

    Google Scholar 

  126. J. Kevorkian. Partial Differential Equations. Wadsworth & Brooks/Cole, 1990.

    Google Scholar 

  127. B. L. Keyfitz and H. C. Kranzer. A system of hyperbolic conservation laws arising in elasticity theory. Arch. Rat. Mech. Anal., 72:219–241, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  128. Arieh Königl. Relativistic gasdynamics in two dimensions. Phys. Fluids, 23:1083, 1980.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  129. N. A. Krall and A. W. Trievelpiece. Principles of Plasma Physics. McGraw-Hill, New York, 1973.

    Google Scholar 

  130. D. Kröner. Numerical Schemes for Conservation Laws. Wiley-Teubner series, 1997.

    Google Scholar 

  131. J. D. Lambert. Computational Methods in Ordinary Differential Equations. Wiley, 1973.

    Google Scholar 

  132. L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon Press Inc., Elmsford, New York, 1979.

    Google Scholar 

  133. J. O. Langseth and R. J. LeVeque. Three-dimensional Euler computations using CLAWPACK. In P. Arminjon, editor, Conf. on Numer. Meth. for Euler and Navier-Stokes Eq., Montreal, 1995. to appear.

    Google Scholar 

  134. J. O. Langseth and R. J. LeVeque. A wave-propagation method for three-dimensional hyperbolic conservation laws. preprint, 1997.

    Google Scholar 

  135. P. D. Lax. Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math., 10:537–566, 1957.

    Article  MATH  MathSciNet  Google Scholar 

  136. P. D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM Regional Conference Series in Applied Mathematics, #11, 1972.

    Google Scholar 

  137. B. P. Leonard, A. P. Lock, and M. K. MacVean. Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Monthly Weather Rev., 124:2588–2606, 1996.

    Article  ADS  Google Scholar 

  138. R. J. LeVeque. CLAWPACK software. available from netlib.att.com in netlib/pdes/claw or on the Web at the URL http://www.amath.washington.edu/~rj1/clawpack.html.

    Google Scholar 

  139. R. J. LeVeque. Intermediate boundary conditions for time-split methods applied to hyperbolic partial differential equations. Math. Comput., 47:37–54, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  140. R. J. LeVeque. Hyperbolic conservation laws and numerical methods. Von Karman Institute for Fluid Dynamics Lecture Series, 90–03, 1990.

    Google Scholar 

  141. R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser-Verlag, 1990.

    Google Scholar 

  142. R. J. LeVeque. Finite difference methods for differential equations. Class Notes, http://www.amath.washington.edu/~rjl, 1996.

    Google Scholar 

  143. R. J. LeVeque. Balancing source terms and flux gradients in high-resolution Godunov methods. in preparation, 1997.

    Google Scholar 

  144. R. J. LeVeque. Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys., 131:327–353, 1997.

    Article  MATH  ADS  Google Scholar 

  145. R. J. LeVeque and K.-M. Shyue. One-dimensional front tracking based on high resolution wave propagation methods. SIAM J. Sci. Comput., 16:348–377, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  146. R. J. LeVeque and K.-M. Shyue. Two-dimensional front tracking based on high resolution wave propagation methods. J. Comput. Phys., 123:354–368, 1996.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  147. R. J. LeVeque and R. Walder. Grid alignment effects and rotated methods for computing complex flows in astrophysics. GAMM Conf. on Comput. Fluid Dyn., Lausanne, 1991.

    Google Scholar 

  148. R. J. LeVeque and H. C. Yee. A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys., 86:187–210, 1990.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  149. E. P. T. Liang. Relativistic simple waves: Shock damping and entropy production. Astrophys. J., 211:361–376, 1977.

    Article  ADS  Google Scholar 

  150. A. Lichnerowicz. Relativistic Hydrodynamics and Magnetohydrodynamics. Benjamin, New York, 1967.

    MATH  Google Scholar 

  151. I. Lindemuth and J. Killeen. Alternating direction implicit techniques for two-dimensional magnetohydrodynamic calculations. J. Comput. Phys., 13:181, 1973.

    Article  ADS  Google Scholar 

  152. M.-S. Liou. A sequel to AUSM: AUSM+. J. Comput. Phys., to appear.

    Google Scholar 

  153. M.-S. Liou and C. J. Steffen Jr. A new flux splitting scheme. J. Comput. Phys., 107:107, 1993.

    Article  MathSciNet  Google Scholar 

  154. T. P. Liu. On the viscosity criterion for hyperbolic conservation laws. In M. Shearer, editor, Viscous Profiles and Numerical Methods for Shock Waves, page 105, Philadelphia, 1991. SIAM.

    Google Scholar 

  155. X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115:200–212, 1994.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. M.-M. Mac Low and M. Normann. Nonlinear growth of dynamical overstabilities in blast waves. Astrophys. J., 407:207–218, 1993.

    Article  ADS  Google Scholar 

  157. A. Marquina. Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conservation laws. SIAM J. Sci. Comput., 15:892, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  158. A. Marquina, J. Ma. Martí, J. Ma. Ibáañez, J. A. Miralles, and R. Donat. Ultra-relativistic hydrodynamics: high-resolution shock-capturing methods. Astron. Astrophys., 258:566–571, 1992.

    ADS  Google Scholar 

  159. R. L. Marsa and M. W. Choptuik. Black hole-scalar field interactions in spherical symmetry, preprint, 1996.

    Google Scholar 

  160. J. M. Martí and E. Müller. The analytical solution of the Riemann problem in relativistic hydrodynamics. J. Fluid Mech., 258:317–333, 1994.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  161. J. Ma. Martí, J. Ma. Ibáñez, and J. A. Miralles. Numerical relativistic hydro-dynamics: Local characteristic approach. Phys. Rev. D, 43:3794–3801, 1991.

    Article  ADS  Google Scholar 

  162. J. Ma. Martí and E. Müller. Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics. J. Comput. Phys., 123:1–14, 1996.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  163. Joan Massó, Edward Seidel, and Paul Walker. Adaptive mesh refinement in numerical relativity. To appear in General Relativity(MG7 Proceedings), R. Ruffini and M. Keiser (eds.), World Scientific, 1995.

    Google Scholar 

  164. G. Mellema, F. Eulderink, and V. Icke. Hydrodynamical models of aspherical planetary nebulae. Astron. Astrophys., 252:718–732, 1991.

    ADS  Google Scholar 

  165. L. Mestel and N. O. Weiss. Magnetohydrodynamics. Fourth Saas-Fee Course, 1974.

    Google Scholar 

  166. D. Mihalas and B. W. Mihalas. Foundations of Radiation Hydrodynamics. Oxford Univesity Press, 1984.

    Google Scholar 

  167. C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W. H. Freeman and Co., New York, 1973.

    Google Scholar 

  168. C. Moller. The Theory of Relativity, 2nd ed. Oxford, University Press, Oxford, 1972.

    Google Scholar 

  169. K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  170. A. Mukherjee. An adaptive finite element code for elliptic boundary value problems in three dimensions with applications in numerical relativity. PhD thesis, Mathematics, Pennsylvania State University, 1996.

    Google Scholar 

  171. W. A. Mulder. Computation of a quasi-steady gas flow in a spiral galaxy by means of a multigrid method. Astron. Astrophys., 156:354–380, 1986.

    ADS  MATH  Google Scholar 

  172. E. Müller and Steinmetz. Simulating self-gravitating hydrodynamics. Comp. Phys. Comm., 89:45–58, 1995.

    Article  ADS  MATH  Google Scholar 

  173. R. S. Myong. Theoretical and computational investigations of nonlinear waves in magnetohydrodynamics. PhD thesis, Aerospace Engineering, University of Michigan, 1996.

    Google Scholar 

  174. Gregory L. Naber. The Geometry of Minkowski Spacetime. Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  175. W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J. Comput. Phys., 72:78, 1987.

    Article  ADS  MATH  Google Scholar 

  176. M. L. Norman and K-H.A. Winkler. Astrophysical Radiation Hydrodynamics. Reidel, Norwell, MA, 1986.

    Google Scholar 

  177. H. Nussbaumer and R. Walder. Modification of the nebular environment in symbiotic systems due to colliding winds. Astronomy and Astrophysics, 278:209–225, 1993.

    ADS  Google Scholar 

  178. E. S. Oran and J. P. Boris. Numerical Simulation of Reactive Flow. Elsevier, 1987.

    Google Scholar 

  179. S. Osher. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Num. Anal., 21:217–235, 1984.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  180. S. Osher and S. Chakravarthy. High resolution schemes and the entropy condition. SIAM J. Num. Anal., 21:995–984, 1984.

    Article  MathSciNet  Google Scholar 

  181. S. Osher and F. Solomon. Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comp., 38:339–374, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  182. W. Pauli. Theory of Relativity. Dover Publications, Inc., New York, 1981.

    Google Scholar 

  183. R. B. Pember. Numerical methods for hyperbolic conservation laws with stiff relaxation, I. Spurious solutions. SIAM J. Appl. Math., 53:1293–1330, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  184. R. B. Pember. Numerical methods for hyperbolic conservation laws with stiff relaxation, II. Higher order Godunov methods. SIAM J. Sci. Comput., 14, 1993.

    Google Scholar 

  185. R. Peyret and T. D. Taylor. Computational Methods for Fluid Flow. Springer, 1983.

    Google Scholar 

  186. K. Powell. Solution of the Euler and Magnetohydrodynamic Equations on Solution-Adaptive Cartesian Grids. Von Karman Institute for Fluid Dynamics Lecture Series, 1996.

    Google Scholar 

  187. K. G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). ICASE Report No. 94-24, NASA Langley Research Center, 1994.

    Google Scholar 

  188. K. G. Powell, P. L. Roe, R. S. Myong, T. Gombosi, and D. De Zeeuw. An upwind scheme for magnetohydrodynamics. AIAA-95-1704-CP, 1995.

    Google Scholar 

  189. K. H. Prendergast and K. Xu. Numerical hydrodynamics from gas-kinetic theory. J. Comput. Phys., 109:53–66, 1993.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  190. J. J. Quirk. A contribution to the great Riemann solver debate. Internat. J. Numer. Methods Fluids, 18:555–574, 1994.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  191. J. Ramshaw. A method for enforcing the solenoidal condition on magnetic fields in numerical calculations. J. Comput. Phys., 52:592–596, 1983.

    Article  MATH  ADS  Google Scholar 

  192. R. D. Richtmyer and K. W. Morton. Difference Methods for Initial-value Problems. Wiley-Interscience, 1967.

    Google Scholar 

  193. T. W. Roberts. The behavior of flux difference splitting schemes near slowly moving shock waves. J. Comput. Phys., 90:141–160, 1990.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  194. P. Roe. The Harten memorial lecture — new applications of upwinding. preprint, 1997.

    Google Scholar 

  195. P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43:357–372, 1981.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  196. P. L. Roe. Numerical algorithms for the linear wave equation. Royal Aircraft Establishment Technical Report 81047, 1981.

    Google Scholar 

  197. P. L. Roe. Some contributions to the modeling of discontinuous flows. Lect. Notes Appl. Math., 22:163–193, 1985.

    MATH  MathSciNet  Google Scholar 

  198. P. L. Roe. Upwind differencing schemes for hyperbolic conservation laws with source terms. In C. Carraso, P.-A. Raviart, and D. Serre, editors, Nonlinear Hyperbolic Problems, pages 41–51. Springer-Verlag, Lecture Notes in Mathematics 1270, 1986.

    Google Scholar 

  199. P. L. Roe and D. S. Balsara. Notes on the eigensystem of magnetohydrodynamics. SIAM J. Appl. Math., 1996.

    Google Scholar 

  200. P. L. Roe and D. Sidilkover. Optimum positive linear schemes for advection in two and three dimensions. SIAM J. Num. Anal., 29:1542–1568, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  201. J. Romero, J. Ma. Ibáñez, J. Ma Marti, and J. A. Miralles. A new spherically symmetric general relativistic hydrodynamical code. Astrophys. J., 462:836, 1996.

    Article  ADS  Google Scholar 

  202. D. Ryu and T. W. Jones. Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for one-dimensional flow. Astrophysical J., 442:228–258, 1995.

    Article  ADS  Google Scholar 

  203. D. Ryu, T. W. Jones, and A. Frank. Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multi-dimensional flow. Astrophysical J., 452:785–796, 1995.

    Article  ADS  Google Scholar 

  204. D. Ryu and E.T. Vishniac. The dynamic instability of adiabatic blast waves. Astrophys. J., 368:411–425, 1991.

    Article  ADS  MathSciNet  Google Scholar 

  205. J. Saltzman. An unsplit 3-D upwind method for hyperbolic conservation laws. J. Comput. Phys., pages 153–168, 1994.

    Google Scholar 

  206. R. H. Sanders and K. H. Prendergast. The possible relation of the 3-kiloparsec arm to explosions in the galactic nucleus. Astrophys. J., 188:489, 1974.

    Article  ADS  Google Scholar 

  207. D. G. Schaeffer and M. Shearer. The classification of 2 x 2 systems of non-strictly hyperbolic conservation laws, with application to oil recovery. Comm. Pure Appl. Math., 40:141–178, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  208. D. G. Schaeffer and M. Shearer. Riemann problems for nonstrictly hyperbolic 2 x 2 systems of conservation laws. Trans. Amer. Math. Soc., 304:267–306, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  209. S. Schecter and M. Shearer. Transversality for undercompressive shocks in Riemann problems. In M. Shearer, editor, Viscous Profiles and Numerical Methods for Shock Waves, pages 142–154, Philadelphia, 1991. SIAM.

    Google Scholar 

  210. D. Schnack and J. Killeen. Nonlinear, two-dimensional magnetohydrodynamic calculations. J. Comput. Phys., 35:110, 1980.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  211. Bernard F. Schutz. A first Course in General Relativity. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  212. E. Seidel and W.-M. Suen. Numerical relativity, preprint.

    Google Scholar 

  213. E. Seidel and W.-M. Suen. Towards a singularity proof in numerical relativity. Phys. Rev. Let., 69:1845–1848, 1992.

    Article  ADS  Google Scholar 

  214. C.-W. Shu. TVB uniformly high-order schemes for conservation laws. Math. Comp., 49:105–121, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  215. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys., 77:439–471, 1988.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  216. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys., 83:32, 1989.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  217. F. H. Shu. The Physics of Astrophysics: Volume 1, Radiation. University Science Books, Mill Valley, CA, 1991.

    Google Scholar 

  218. F. H. Shu. The Physics of Astrophysics: Volume 2, Gas Dynamics. University Science Books, Mill Valley, CA, 1991.

    Google Scholar 

  219. D. Sidilkover. A genuinely multidimensional upwind scheme for the compressible Euler equations. In J. Glimm et al., editors, Proceedings of the Fifth International Conference on Hyperbolic Problems: Theory, Numerics, Applications. World Scientific, June 1994.

    Google Scholar 

  220. P. K. Smolarkeiwicz and W. W. Grabowski. The multidimensional positive definite advection transport algorithm: nonoscillatory option. J. Comput. Phys., 86:355–375, 1990.

    Article  ADS  Google Scholar 

  221. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1983.

    Google Scholar 

  222. J. Smoller and B. Temple. Global solutions of the relativistic Euler equations. Comm. Math. Phys., 156:67–99, 1993.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  223. J. Smoller and B. Temple. Shock-waves and irreversibility in Einstein’s theory of gravity. In J. Glimm et al., editors, Proceedings of the Fifth International Conference on Hyperbolic Problems: Theory, Numerics, Applications, pages 81–90, Singapore, June 1994. World Scientific.

    Google Scholar 

  224. J. Smoller and B. Temple. An astrophysical shock-wave solution of the Einstein equations. Phys. Rev. D, 51:2733–2743, 1996.

    Article  ADS  MathSciNet  Google Scholar 

  225. G. Sod. A survey of several finite diffeence methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys., 27:1–31, 1978.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  226. G. Sod. Numerical Methods for Fluid Dynamics. Cambridge University Press, 1985.

    Google Scholar 

  227. J. L. Steger and R. F. Warming. Flux vector splitting of the inviscid gasdynamic equations with applications to finite-difference methods. J. Comput. Phys., 40:263, 1981.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  228. O. Steiner, M. Knölker, and M. Schüssler. Dynamic interaction of convection with magnetic flux sheets: first results of a new MHD code. In R. J. Rutten and C. J. Schrijver, editors, Solar Surface Magnetism, NATO Advanced Research Workshop, Dordrecht, 1993. Kluwer Academic Publishers.

    Google Scholar 

  229. R. S. Steinolfson and A. J. Hundhausen. MHD intermediate shocks in coronal mass ejections. J. Geophys. Res., 95:6389, 1990.

    Article  ADS  Google Scholar 

  230. I. R. Stevens, J. M. Blondin, and A. M. T. Pollock. Colliding winds from early-type stars in binary systems. Ap.J., 386:265–287, 1992.

    Article  ADS  Google Scholar 

  231. G. Strang. On the construction and comparison of difference schemes. SIAM J. Num. Anal., 5:506–517, 1968.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  232. J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks/Cole, 1989.

    Google Scholar 

  233. Paul N. Swarztrauber. Fast Poisson solvers. In Gene H. Golub, editor, Studies in Numerical Analysis, volume 24, pages 319–370, Washington, D.C., 1984. The Mathematical Association of America.

    Google Scholar 

  234. P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Num. Anal., 21:995–1011, 1984.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  235. J. L. Synge. The Relativistic Gas. North-Holland Publishing Company, Amsterdam, 1957.

    MATH  Google Scholar 

  236. A. H. Taub. Relativistic Rankine-Hugoniot equations. Phys. Rev., 74:328, 1948.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  237. Kevin W. Thompson. The special relativistic shock tube. J. Fluid Mech., 171:365–375, 1986.

    Article  ADS  MATH  Google Scholar 

  238. K. S. Thorne. Gravitational radiation. In S. W. Hawking and W. Israel, editors, 300 Years of Gravitation. Cambridge University Press, 1987.

    Google Scholar 

  239. K. S. Thorne. Black Holes and Time Warps. W. W. Norton & Co., New York, 1994.

    Google Scholar 

  240. K. S. Thorne. Gravitational waves. In E. W. Kolb and R. D. Peccei, editors, Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, Proc. 1994 Snowmass Summer School, pages 160–184. World Scientific, 1994.

    Google Scholar 

  241. K.S. Thorne. Relativistic shock: The Taub adiabat. Astrophys. J., 179:897, 1973.

    Article  ADS  Google Scholar 

  242. E. F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer-Verlag, Berlin, Heidelberg, 1997.

    MATH  Google Scholar 

  243. J. A. Trangenstein. An unsplit Godunov method for three-dimensional polymer flooding. preprint, 1993.

    Google Scholar 

  244. L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

    Book  MATH  Google Scholar 

  245. G. D. van Albada, B. van Leer, and W. W. Roberts, Jr. A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys., 108:76–84, 1982.

    ADS  MATH  Google Scholar 

  246. B. van Leer. Towards the ultimate conservative difference scheme I. The quest of monotonicity. Springer Lecture Notes in Physics, 18:163–168, 1973.

    Article  ADS  Google Scholar 

  247. B. van Leer. Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J. Comput. Phys., 23:276–299, 1977.

    Article  ADS  MATH  Google Scholar 

  248. B. van Leer. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J. Comput. Phys., 32:101–136, 1979.

    Article  ADS  Google Scholar 

  249. B. van Leer. Flux-vector splitting for the Euler equations. In E. Krause, editor, Lecture Notes in Physics, volume 170, page 507. Springer-Verlag, 1982.

    Google Scholar 

  250. B. van Leer. On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher, and Roe. SIAM J. Sci. Stat. Comput., 5:1–20, 1984.

    Article  MATH  Google Scholar 

  251. E. T. Vishniac. Nonlinear instabilities in shock-bounded slabs. Astrophys. J., 428:186–208, 1994.

    Article  ADS  Google Scholar 

  252. R. M. Wald. General Relativity. Univesity of Chicago Press, 1984.

    Google Scholar 

  253. R. Walder. Some Aspects of the Computational Dynamics of Colliding Flows in Astrophysical Nebulae. PhD thesis, Astronomy Institute, ETH-Zürich, No. 10302, 1993.

    Google Scholar 

  254. R. Walder and D. Folini. Radiative cooling instability in ID colliding flows. Astronomy and Astrophysics, 315:265–284, 1996.

    ADS  Google Scholar 

  255. P. Wesseling. An Introduction to Multigrid Methods. Wiley, New York, 1992.

    MATH  Google Scholar 

  256. G. Whitham. Linear and Nonlinear Waves. Wiley-Interscience, 1974.

    Google Scholar 

  257. F. A. Williams. Combustion Theory. Benjamin/Cummings, 1985.

    Google Scholar 

  258. P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 54:115–173, 1984.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  259. C. C. Wu. On MHD intermediate shocks. Geophys. Res. Letters, 14:668–671, 1987.

    Article  ADS  Google Scholar 

  260. C. C. Wu. Formation, structure, and stability of MHD intermediate shocks. J. Geophys. Res., 95:8149, 1990.

    Article  ADS  Google Scholar 

  261. C. C. Wu. New theory of MHD shock waves. In M. Shearer, editor, Viscous Profiles and Numerical Methods for Shock Waves, pages 231–235, Philadelphia, 1991. SIAM.

    Google Scholar 

  262. C. C. Wu and C. F. Kennel. Evolution of small amplitude intermediate shocks in a dissipative and dispersive system. J. Plasma Phys., 47:85, 1992.

    Article  ADS  Google Scholar 

  263. H. C. Yee. Upwind and symmetric shock-capturing schemes. NASA Ames Technical Memorandum 89464, 1987.

    Google Scholar 

  264. A. L. Zachary and P. Colella. A higher order Godunov method for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 99:341–347, 1992.

    Article  ADS  MATH  Google Scholar 

  265. A. L. Zachary, A. Malagoli, and P. Colella. A higher-order Godunov method for multidimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput., 15:263–284, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  266. S. T. Zalesak. Fully multidimensional flux corrected transport algorithms for fluids. J. Comput. Phys., 31:335–362, 1979.

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

LeVeque, R.J. (1998). Nonlinear Conservation Laws and Finite Volume Methods. In: Steiner, O., Gautschy, A. (eds) Computational Methods for Astrophysical Fluid Flow. Saas-Fee Advanced Courses, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31632-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-31632-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64448-4

  • Online ISBN: 978-3-540-31632-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics