Skip to main content

Kinetic Plasma Physics

  • Chapter
Plasma Astrophysics

Part of the book series: Saas-Fee Advanced Courses ((SAASFEE,volume 24))

Abstract

In the kinetic theory of plasmas, particles are described by distribution functions whose evolution is determined by kinetic equations. The spectrum of fluctuations in the plasma includes distributions of weakly damped waves. The kinetic equation for the particles may be averaged over these fluctuations to find averaged kinetic equations, sometimes called the quasilinear equations. These kinetic equations describe the slow evolution of the waves, which may be damped or may grow, and of the particles, which diffuse in momentum space. In this lecture course, a general derivation of the quasilinear equations is given in the first two lectures, and these equations are used to treat resonant scattering and related processes is the next three lectures. The last four lectures are concerned with radiation processes in various astrophysical sources. Radiation processes may also be treated using the theory outlined in the first two lectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achterberg, A. (1981): “On the nature of small amplitude Fermi acceleration” Astron. Astrophys. 97, 259–264

    ADS  MATH  Google Scholar 

  • Achterberg, A. (1990): “Particle acceleration near astrophysical shocks” in (eds) Brinkmann, W., Fabian, A.C., Giovannelli, F., Physical Processes in Hot Cosmic Plasmas (Kluwer: Dordrecht) pp. 67–80

    Google Scholar 

  • Achterberg, A., Ball, L. (1994): “Particle acceleration at superluminal quasi-perpendicular shocks” Astron. Astrophys. 284, 687–704

    ADS  Google Scholar 

  • Akasofu, S.-I (1977): Physics of Magnetospheric Substorms (D. Reidel: Dordrecht)

    Google Scholar 

  • Akhiezer, A.I., Akhiezer, LA., Polovin, R.V., Sitenko, A.G. Stepanov, K.N. (1967): Collective Oscillations in a Plasma (M.I.T. Press: Cambridge, Mass.)

    Google Scholar 

  • Arons, J. (1983): “Pair creation above pulsar polar caps: geometrical structure and energetics of slot gaps” Astrophys, J. 266, 215–241

    Article  ADS  Google Scholar 

  • Arons, J. (1992): “Magnetospheric structure of rotation-powered neutron stars” in (eds) Hankins, T.H., Rankin, J.M., Gil, J.A., The Magnetospheric Structure and Emission Mechanisms of Radio Pulsars (Pedagogical University Press: Zielona Góra) pp. 56–77

    Google Scholar 

  • Arons, J., Barnard, J.J. (1986): “Wave propagation in pulsar magnetospheres: dispersion relations and normal modes of plasmas in superstrong magnetic fields” Astrophys, J. 302, 120–137

    Article  ADS  Google Scholar 

  • Asseo, E., Pelletier, G., Sol, H. (1990): “A non-linear radio pulsar emission mechanism” Mon, Not. R. Astron. Soc. 247, 529–548

    ADS  Google Scholar 

  • Axford, W.I. (1992): “Particle acceleration on galactic scales” in (eds) Zank, G.P., Gaisser, T.K., Particle Acceleration in Cosmic Plasmas, (AIP: New York) pp. 45–56

    Google Scholar 

  • Barbosa, D.D. (1979): “Stochastic acceleration of solar flare protons” Astrophys. J. 233, 383–394

    Article  ADS  MathSciNet  Google Scholar 

  • Bekefi, G. (1966): Radiation Processes in Plasmas (John Wiley & Sons: New York)

    Google Scholar 

  • Benson, R.F., Calvert, W., Klumpar, D.M. (1980): “Simultaneous wave and particle observations in the auroral kilometric radiation source region” Geophys. Res. Lett. 7, 959–962

    Article  ADS  Google Scholar 

  • Benz, A.O. (1986): “Millisecond radio spikes” Solar Phys, 104, 99–110

    Article  ADS  Google Scholar 

  • Benz, A.O. (1993): Plasma Astrophysics (Kluwer Academic Publishers: Dordrecht)

    Google Scholar 

  • Beskin, V.S., Gurevich, A.V., Istomin, Ya.N. (1993): Physics of the Pulsar Magnetosphere (Cambridge University Press)

    Google Scholar 

  • Blandford, R.D. (1975): “Amplification of radiation by relativistic particles in a strong magnetic field” Mon. Not. R. Astron. Soc. 170, 551–557

    ADS  Google Scholar 

  • Blandford, R.D., Netzer, H., Woltjer, L. (1990): Active Galactic Nuclei (Springer-Verlag: Berlin)

    Book  Google Scholar 

  • Boström, R., Gustafsson, G., Holback, B., Holgren, G., Koskinen, H., Kintner, P. (1988): “Characteristics of solitary waves and weak double layers in the magnetospheric plasma” Phys. Rev. Lett. 61, 82–85

    Article  ADS  Google Scholar 

  • Cargill, P. J., Papadopoulos, K. (1988): “A mechanism for strong shock electron heating in supernova remnants” Astrophys. J. 329, L29–L32

    Article  ADS  Google Scholar 

  • Carr, T.D., Gulkis, S. (1969): “The magnetosphere of Jupiter” Ann. Rev. Astron. Astrophys. 7, 577–618

    Article  ADS  Google Scholar 

  • Cesarsky, C.J. (1980): “Cosmic-ray confinement in the galaxy” Ann. Rev. Astron. Astrophys. 18, 289–319

    Article  ADS  Google Scholar 

  • Cheng, K.S., Ho, C. Ruderman, M.A. (1986a & b): “Energetic radiation from rapidly spinning pulsars. I & II” Astrophys. J. 300, 500–521 & 522–539

    Article  ADS  Google Scholar 

  • Chupp, E.L. (1983): “High energy particle acceleration in solar flares — Observational evidence” Solar Phys. 86, 383–393

    Article  ADS  Google Scholar 

  • Davis, L., Jr (1956): “Modified Fermi mechanism for the acceleration of cosmic rays” Phys. Rev. 101, 351–358

    Article  ADS  Google Scholar 

  • Dessler, A.J. (ed.) (1983): Physics of the Jovian Magnetosphere (Cambridge University Press)

    Google Scholar 

  • Dragt, A.J. (1961): “Effect of hydromagnetic waves of the lifetime of Van Allen radiation protons” J. Geophys. Res. 66, 1641–1649

    Article  ADS  Google Scholar 

  • Dulk, G.A. (1967): “Apparent changes in the rotation rate of Jupiter” Icarus 7, 173–182

    Article  ADS  Google Scholar 

  • Dulk, G.A. (1985): “Radio emission from the Sun and stars” Ann. Rev. Astron. Astrophys. 23, 169–224

    Article  ADS  Google Scholar 

  • Dungey, J. W. (1961): “Interplanetary magnetic field and the auroral zones” Phys. Rev. Lett. 6, 47–48

    Article  ADS  Google Scholar 

  • Dungey, J. W. (1963): “Loss of Van Allen electrons due to whistlers” Planet. Space Sci. 11, 591–595

    Article  ADS  Google Scholar 

  • Fermi, E. (1949): “On the origin of cosmic radiation” Phys. Rev. 75, 1169–1174

    Article  ADS  MATH  Google Scholar 

  • Field, G.B. (1986): “Theory of the interstellar medium” in (eds) Shapiro, S.T., Teukolsky, S.A., Highlights of Modern Astrophysics (John Wiley & Sons: New York) pp. 235–265

    Google Scholar 

  • Gaisser, T.K. (1990): Cosmic Rays and Particle Physics (Cambridge University Press)

    Google Scholar 

  • Ginzburg, V.L., Syrovatskii, S.I. (1965): “Cosmic magnetobremsstrahlung (synchrotron radiation)” Ann. Rev. Astron. Astrophys. 3, 297–350

    Article  ADS  Google Scholar 

  • Ginzburg, V.L., Zheleznyakov, V.V. (1975): “On the pulsar emission mechanisms” Ann. Rev. Astron. Astrophys. 13, 511–535

    Article  ADS  Google Scholar 

  • Goldman, M.V. (1983): “Progress and problems in the theory of type III solar radio emission” Solar Phys. 89, 403–442

    Article  ADS  Google Scholar 

  • Goldman, M.V. (1984): “Strong turbulence of plasma waves” Rev. Mod. Phys. 56, 709–735

    Article  ADS  Google Scholar 

  • Goldman, M.V., Smith, D.F. (1986): “Solar radio emission” in (ed.) Sturrock, P.A., Physics of the Sun, Volume II (D. Reidel: Dordrecht) pp. 325–376

    Google Scholar 

  • Goldreich, P., Julian, W.H. (1969): “Pulsar electrodynamics” Astrophys. J. 157, 869–880

    Article  ADS  Google Scholar 

  • Goldreich, P. Lynden-Bell, D. (1969): “Io, a Jovian unipolar inductor” Astrophys. J. 156, 59–78

    Article  ADS  Google Scholar 

  • Goldstein, H. (1959): Classical Mechanics (Addison-Wesley: Reading, Mass.)

    Google Scholar 

  • Goldstein, M.L., Goertz, C.K. (1983): “Theories of radio emissions and plasma waves” in (ed.) Dessler, A.J., Physics of the Jovian Magnetosphere (Cambridge University Press) pp. 317–352

    Google Scholar 

  • Grognard, R.J.M. (1985): “Propagation of electron streams” in (eds) McLean, D.J., Labrum, N.R., Solar Radiophysics (Cambridge University Press) pp. 253–286

    Google Scholar 

  • Gurnett, D.A. (1974): “The Earth as a radio source. Terrestrial kilometric radiation” J. Geophys. Res. 79, 4277–4238

    ADS  Google Scholar 

  • Hall, D.E., Sturrock, P.A. (1967): “Diffusion, scattering, and acceleration of particles by stochastic electromagnetic fields” Phys. Fluids 10, 2620–2628

    Article  MATH  ADS  Google Scholar 

  • Hanasz, J. (1966): “Chains of type I solar radio bursts” Aust. J. Phys. 19, 635–647

    ADS  Google Scholar 

  • Hasselmann, K., Wibberenz, G. (1968): “Scattering of charged particles by random electromagnetic fields” Z. Geophys. 34, 353–388

    Google Scholar 

  • Helliwell, R.A. (1967): “A theory of discrete VLF emissions from the magnetosphere” J. Geophys. Res. 72, 4773–4790

    Article  ADS  Google Scholar 

  • Hewitt, R.G., Melrose, D.B., Rönnmark, K.G. (1982): “The loss-cone driven electron-cyclotron maser” Aust. J. Phys. 35, 447–471

    ADS  Google Scholar 

  • Hillas, A.M. (1984): “The origin of ultra-high-energy cosmic rays” Ann. Rev. Astron. Astrophys. 22, 425–444

    Article  ADS  Google Scholar 

  • Holloway, N.J. (1973): “p-n junctions in pulsar magnetospheres?” Nature Phys. Sci. 246, 6–9

    ADS  Google Scholar 

  • Holman, G.D., Eichler, D., Kundu, M.R. (1980): “An interpretation of solar flare microwave spikes as gyrosynchrotron masering” in (eds.) Kundu, M.R., Holman, G.D., Unstable Current Systems and Plasma Instabilities in Astrophysics (D. Reidel: Dordrecht) pp. 457–459

    Google Scholar 

  • de Jager, C., Kuijpers, J., Correia, E., Kaufmann, P. (1987): “A high-energy solar flare burst complex and the physical properties of its source region” Solar Phys. 110, 317–326

    ADS  Google Scholar 

  • Jokipii, J.R. (1966): “Cosmic-ray propagation. I. Charged particles in a random magnetic field” Astrophys. J. 146, 480–487

    Article  ADS  Google Scholar 

  • Jokipii, J.R. (1971): “Propagation of cosmic rays in the solar wind” Rev. Geophys. Space Phys. 9, 27–87

    Article  ADS  Google Scholar 

  • Jokipii, J.R. (1982): “Particle drift, diffusion, and acceleration at shocks” Astrophys. J. 255, 716–720

    Article  ADS  Google Scholar 

  • Jokipii, J.R. (1987): “Rate of energy gain and maximum energy in diffusive shock acceleration” Astrophys. J. 313, 842–846

    Article  ADS  Google Scholar 

  • Kaplan, S.A., Tsytovich, V.N. (1973): Plasma Astrophysics (Pergamon Press: Oxford)

    Google Scholar 

  • Kardashev, N.S. (1962): “Nonstationariness of spectra of young sources of nonthermal radio emission” Soviet. Astron. AJ 6, 317–327

    ADS  Google Scholar 

  • Kazbegi, A.Z., Machabeli, G.Z., Melikidze, G.I. (1991): “On the circular polarization of pulsar emission” Mon. Not. R. Astron. Soc. 253, 377–387

    ADS  Google Scholar 

  • Kellerman, K.I., Pauliny-Toth, I.I.K. (1969): “The spectra of opaque radio sources” Astrophys. J. 155, L71–L78

    Article  ADS  Google Scholar 

  • Kennel, C.F., Coroniti, F.V. (1984a): “Confinement of the Crab pulsar’s wind by its supernova remnant” Astrophys. J. 283, 694–709

    Article  ADS  Google Scholar 

  • Kennel, C.F., Coroniti, F.V. (1984b): “Magnetohydrodynamic model of Crab nebula radiation” Astrophys. J. 283, 710–730

    Article  ADS  Google Scholar 

  • Kennel, C.F., Petschek, H.E. (1966): “Limit on stably trapped particle fluxes” J. Geophys. Res. 71, 1–28

    ADS  Google Scholar 

  • Kuijpers, J. (1985): “Radio observable processes in stars” in (eds) Hjellming, R.M., Gibson, D.M., Radio Stars (D. Reidel: Dordrecht) pp. 3–31

    Google Scholar 

  • Kulsrud, R.M., Ferrari, A. (1971): “The relativistic quasilinear theory of particle acceleration by hydromagnetic turbulence” Astrophys. Space Sci. 12, 302–318

    Article  ADS  Google Scholar 

  • Kulsrud, R.M., Pearce, W.P. (1969): “The effect of wave-particle interactions on the propagation of cosmic rays” Astrophys. J. 156, 445–469

    Article  ADS  Google Scholar 

  • Lacombe, C. (1977): “Acceleration of particles and plasma heating by turbulent Alfvén waves in a radiogalaxy” Astron. Astrophys. 54, 1–16

    ADS  Google Scholar 

  • Lee, M.A. (1983): “Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks” J. Geophys. Res. 88, 6109–6119

    Article  ADS  Google Scholar 

  • Lee, M.A. (1992): “Particle acceleration in the heliosphere” in (eds) Zank, G.P., Gaisser, T.K., Particle Acceleration in Cosmic Plasmas (AIP: New York) pp. 27–44

    Google Scholar 

  • Leroy, M.M., Mangeney, A. (1984): “A theory of energization of solar wind electrons by the Earth’s bow shock” Annales Geophys. 2, 449–455

    ADS  Google Scholar 

  • Lifshitz, E.M., Pitaevskii, L.P. (1981): Physical Kinetics (Pergamon Press: Oxford)

    Google Scholar 

  • Lin, R.P., Potter, D.W., Gurnett, D.A., Scarf, F.L. (1981): “Energetic electrons and plasma waves associated with a solar type III radio burst” Astrophys. J. 251, 364–373

    Article  ADS  Google Scholar 

  • Longair, M.S. (1992): High Energy Astrophysics Volume 1 Particles, Photons and their Detection (Cambridge University Press)

    Google Scholar 

  • Louarn, P., Roux, A., de Féraudy, H., Le Quéau, D., André, M., Matson, L. (1990): “Trapped electrons as a free energy source for the auroral kilometric radiation” J. Geophys. Res. 95, 5983–5995

    Article  ADS  Google Scholar 

  • Luo, Q., Melrose, D.B. (1992): “Coherent curvature emission and radio pulsars” Mon. Not. R. Astron. Soc. 258, 616–620

    ADS  Google Scholar 

  • Machabeli, G.Z. (1991): “On the impossibility of wave generation due to plasma motion in the weakly inhomogeneous magnetic field of pulsars” Plasma Physics and Controlled Fusion 33, 1227–1234

    Article  ADS  Google Scholar 

  • Matsumoto, H. (1979): “Nonlinear whistler-mode interactions and triggered emissions in the magnetosphere: A review” in (ed.) Palmadesso, P.J., Papadopoulos, K., Wave Instabilities in Space Plasmas (D. Reidel: Dordrecht) pp. 163–190

    Google Scholar 

  • McKean, M.E., Winglee, R.M., Dulk, G.A. (1989): “Propagation and absorption of electron-cyclotron maser radiation during solar flares” Solar Phys. 122, 53–89

    Article  ADS  Google Scholar 

  • McLean, D.J., Labrum, N.R. (1985): Solar Radiophysics (Cambridge University Press)

    Google Scholar 

  • Melrose, D.B. (1968): “The emission and absorption of waves by charged particles in magnetized plasmas” Astrophys. Space Sci. 2, 171–235

    Article  ADS  MathSciNet  Google Scholar 

  • Melrose, D.B. (1976): “An interpretation of Jupiter’s decametric radiation and the terrestrial kilometric radiation as direct amplified gyro-emission” Astrophys. J. 207, 651–662

    Article  ADS  Google Scholar 

  • Melrose, D.B. (1978): “Amplified linear acceleration emission applied to pulsars” Astrophys. J. 225, 557–573

    Article  ADS  Google Scholar 

  • Melrose, D.B. (1980): Plasma Astrophysics Volume I Emission, Absorption and Transfer of Waves in Plasmas (Gordon & Breach: New York)

    Google Scholar 

  • Melrose, D.B. (1980): Plasma Astrophysics Volume II Astrophysical Applications (Gordon & Breach: New York)

    Google Scholar 

  • Melrose, D.B. (1981): “Evolution and radiation in pulsar polar cap models” in (eds) Sieber, W., Wielebinski, R., Pulsars, 13 years of Research on Neutron Stars (D. Reidel: Dordrecht) pp. 133–140

    Google Scholar 

  • Melrose, D.B. (1983): “Prompt acceleration of ≥ 30 MeV per nucleon ions in solar flares” Solar Phys. 89, 149–162

    Article  ADS  Google Scholar 

  • Melrose, D.B. (1986): Instabilities in Space and Laboratory Plasmas (Cambridge University Press)

    Google Scholar 

  • Melrose, D.B. (1991): “Emission at cyclotron harmonics due to coalescence of z-mode waves” Astrophys. J. 380, 256–267

    Article  ADS  Google Scholar 

  • Melrose, D.B., Cramer, N.F. (1989): “Quasilinear relaxation of electrons interacting with an inhomogeneous distribution of Langmuir waves” Solar Phys. 123, 343–365

    Article  ADS  Google Scholar 

  • Melrose, D.B., Dulk, G.A. (1982): “Electron-cyclotron masers as the source of certain solar and stellar radio burst” Astrophys. J. 259, 884–858

    Article  ADS  Google Scholar 

  • Melrose, D.B., Dulk, G.A. (1988): “Implications of the LiouviUe’s theorem on the apparent directivities and brightness temperatures of solar radio bursts” Solar Phys. 116, 141–156

    Article  ADS  Google Scholar 

  • Melrose, D.B., Dulk, G.A. (1993): “Electron cyclotron maser emission at oblique angles” Planet. Space Sci. 41, 333–339

    Article  ADS  Google Scholar 

  • Melrose, D.B., Goldman, M.V. (1987) “Microstructures in type III events in the solar wind” Solar Phys. 107, 329–350

    Article  ADS  Google Scholar 

  • Melrose, D.B., McPhedran, R.C. (1991): Electromagnetic Processes in Dispersive Media (Cambridge University Press)

    Google Scholar 

  • Melrose, D.B., Rönnmark, K.G., Hewitt, R.G. (1982): “Terrestrial kilometric radiation: the cyclotron theory” J. Geophys. Res. 87, 5140–5150

    Article  ADS  Google Scholar 

  • Mestel, L. (1993): “Pulsar magnetospheres” in (eds) Blandford, R.D., Hewish, A., Lyne, A.G., Mestel, L., Pulsars as Physics Laboratories (Oxford University Press) pp. 93–104

    Google Scholar 

  • Mestel, L., Robertson, J.A., Wang, Y.-M., Westfold, K.C. (1985): “The axisymmetric pulsar magnetosphere” Mon. Not. R. Astron, Soc. 217, 443–484

    ADS  MATH  Google Scholar 

  • Michel, F.C. (1982): “Theory of pulsar magnetospheres” Rev. Mod. Phys. 54, 1–66

    Article  ADS  Google Scholar 

  • Michel, F.C. (1991): Theory of Neutron Star Magnetospheres (University of Chicago Press)

    Google Scholar 

  • Mozer, F.S., Cattell, C.A., Hudson, M.K., Lysak, R.L., Temerin, M., Torbert, R.B. (1980): “Satellite measurements and theories of low altitude auroral particle acceleration” Space Sci. Rev. 27, 155–213

    Article  ADS  Google Scholar 

  • Nambu, M. (1989): “Stability of a nonstationary and inhomogeneous plasma” Plasma Physics and Controlled Fusion 31, 143–145

    Article  ADS  MathSciNet  Google Scholar 

  • Neuhauser, D., Koonin, S.E., Langanke, K. (1987) “Hartree-Fock calculations of atoms and molecular chains in strong magnetic fields” Phys. Rev. A36, 4163–4175

    ADS  Google Scholar 

  • Nicholson, D.R. (1983): Introduction to Plasma Theory (John Wiley & Sons: New York)

    Google Scholar 

  • Omidi, N., Gurnett, D.A. (1982): “Growth rate calculations of auroral kilometric radiation using the relativistic resonance condition” J. Geophys. Res. 87, 2377–2383

    Article  ADS  Google Scholar 

  • Parker, E.N. (1957): “Acceleration of cosmic rays in solar flares” Phys. Rev. 107, 830–836

    Article  ADS  Google Scholar 

  • Reames, D.V. (1992): “Particle acceleration in the heliosphere” in (eds) Zank, G.P., Gaisser, T.K., Particle Acceleration in Cosmic Plasmas, (AIP: New York) pp. 213–222

    Google Scholar 

  • Rickett, B.J. (1990): “Radio propagation through the turbulent interstellar medium” Ann. Rev. Astron. Astrophys. 28, 561–605

    Article  ADS  Google Scholar 

  • Robinson, P.A. (1989): “Escape of fundamental electron cyclotron maser emission from the Sun and stars” Astrophys. J. 341, L99–L102

    Article  ADS  Google Scholar 

  • Robinson, P.A. (1993): “Stochastic-growth theory of Langmuir growth-rate fluctuations in type III solar radio sources” Solar Phys. 146, 357–363

    Article  ADS  Google Scholar 

  • Robinson, P.A., Newman, D.L. (1990): “Two-component model of strong Langmuir turbulence: scalings, spectra and statistics of Langmuir waves” Phys. Fluids B 2, 2999–3016

    Article  ADS  Google Scholar 

  • Roederer, J.G. (1970): Dynamics of Geomagnetically Trapped Radiation (Springer-Verlag: Berlin)

    Google Scholar 

  • Roux, A., Hilgers, A., de Feraudy, H., Le Quéau, D., Louarn, P., Perraut, S., Bahnsen, A., Jespersen, M., Ungstrup, E., André, M. (1993): “Auroral kilometric radiation sources: in situ and remote observations from Viking” J. Geophys. Res. 98, 11, 657–11, 670

    Article  Google Scholar 

  • Rowe, E.T. (1992a & b): “Particle motion in longitudinal waves. I. & II.” Aust. J. Phys. 45, 1–20 & 21–37

    ADS  Google Scholar 

  • Ruderman, M.A. (1981): “Evolution and radiation in pulsar polar cap models” in (eds) Sieber, W., Wielebinski, R., Pulsars, 13 years of Research on Neutron Stars (D. Reidel: Dordrecht) pp. 87–98

    Google Scholar 

  • Ruderman, M.A., Sutherland, P.G. (1975): “Theory of pulsars: polar gaps, sparks and coherent microwave emission” Astrophys. J. 196, 57–72

    Article  ADS  Google Scholar 

  • Rybicki, G.B., Lightman, A.P. (1979): Radiative Processes in Astrophysics (John Wiley & Sons: New York)

    Google Scholar 

  • Schott, G.A. (1912): Electromagnetic Radiation (Cambridge University Press)

    Google Scholar 

  • Schulz, M., Lanzerotti, L.J. (1974): Particle Diffusion in the Radiation Belts (Springer-Verlag: Berlin)

    Google Scholar 

  • Shabad, A. Ye. (1992) Polarization of the Vacuum and a Quantum Relativistic Gas in an External Field (Nova Science Publishers: New York)

    Google Scholar 

  • Shabad, A.E., Usov, V.V. (1984): “Propagation of γ-radiation in strong magnetic fields of pulsars” Astrophys. Space Sci, 102, 327–358

    Article  ADS  Google Scholar 

  • Shu, F.H. (1991): The Physics of Astrophysics Volume I: Radiation (University Science Books: Mill Valley, California)

    Google Scholar 

  • Skilling, J.A. (1975a): “Cosmic ray streaming-I Effect of Alfvén waves on particles” Mon, Not. R. Astron. Soc. 172, 557–566

    ADS  Google Scholar 

  • Skilling, J.A. (1975b): “Cosmic ray streaming-II Effect of particles on Alfvén waves” Mon. Not. R. Astron. Soc. 173, 245–254

    ADS  Google Scholar 

  • Skilling, J.A. (1975c): “Cosmic ray streaming-III Self-consistent solutions” Mon. Not. R. Astron. Soc. 173, 255–269

    ADS  Google Scholar 

  • Spitzer, L., Jr (1990): “Theories of the hot interstellar gas” Ann. Rev. Astron. Astrophys. 28, 71–101

    Article  ADS  Google Scholar 

  • Stix, T.H. (1962): The Theory of Plasma Waves (McGraw-Hill: New York)

    MATH  Google Scholar 

  • Sturrock, P.A. (1971): “A model of pulsars” Astrophys. J. 164, 529–556

    Article  ADS  Google Scholar 

  • Sturrock, P.A. (ed.) (1980): Solar Flares (Colorado Associated Press: Boulder)

    Google Scholar 

  • Sturrock, P.A., Kaufmann, P., Moore, R.L., Smith, D.F. (1984): “Energy release in solar flares” Solar Phys. 94, 341–357

    Article  ADS  Google Scholar 

  • Tsytovich, V. N. (1966): “Statistical acceleration of particles in a turbulent plasma” Soviet Phys. Usp. 9, 370–404

    Article  ADS  Google Scholar 

  • Ursov, V.N., Usov, V.V. (1988): “Plasma flow nonstationarity in pulsar magnetospheres and two-stream instability” Astrophys. Space Sci. 140, 325–336

    Article  ADS  Google Scholar 

  • Vlahos L. (1987): “Electron cyclotron maser emission from solar flares” Solar Phys. 111, 155–166

    Article  ADS  Google Scholar 

  • Warwick, J.W. (1967): “Radiophysics of Jupiter” Space Sci. Rev. 6, 841–891

    Article  ADS  Google Scholar 

  • Wdowczyk, J., Wolfendale, A.W. (1989): “Highest energy cosmic rays” Ann. Rev. Nucl. Part. Sci. 39, 43–71

    Article  ADS  Google Scholar 

  • Wentzel, D.G. (1961): “Hydromagnetic waves and the trapped radiation. Part 1. Breakdown of the adiabatic invariance” J. Geophys. Res. 66, 359–369

    Article  ADS  Google Scholar 

  • Wentzel, D.G. (1974): “Cosmic-ray propagation in the galaxy: collective effects” Ann. Rev. Astron. Astrophys. 12, 71–96

    Article  ADS  Google Scholar 

  • Wild, J.P., Smerd, S.F., Weiss, A.A. (1963): “Solar bursts” Ann. Rev. Astron. Astrophys. 1, 291–366

    Article  ADS  Google Scholar 

  • Wild, J.P., Smerd, S.F. (1971): “Radio bursts from the solar corona” Ann. Rev. Astron. Astrophys. 10, 159–196

    Article  ADS  Google Scholar 

  • Winglee, R.M., Dulk, G.A., Pritchett, P.L. (1988): “Fine structure of microwave spike bursts and associated cross-field energy transport” Astrophys. J. 328, 809–823

    Article  ADS  Google Scholar 

  • Wu, C.S. (1986): “Kinetic cyclotron and synchrotron maser instabilities. Radio emission processes by direct amplification of radiation” Space Sci. Rev. 41, 215–298

    ADS  Google Scholar 

  • Wu, C.S., Lee, L.C. (1979): “A theory of the terrestrial kilometric radiation” Astrophys. J. 230, 621–626

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Shaposhnikov, V.E. (1979): “Absorption of curvature radiation” Aust. J. Phys. 32, 49–59

    ADS  Google Scholar 

  • Zhou, Y., Mattheus, W.H. (1990): “Transport and turbulence modeling of solar wind fluctuations” J. Geophys. Res. 95, 10, 291–10, 311

    Google Scholar 

  • Zlobec, P. (1975): “Intermediate polarization of type I bursts” Solar Phys. 43, 453–461

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melrose, D.B. (1994). Kinetic Plasma Physics. In: Benz, A.O., Courvoisier, T.JL. (eds) Plasma Astrophysics. Saas-Fee Advanced Courses, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31627-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-31627-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58327-1

  • Online ISBN: 978-3-540-31627-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics