Skip to main content

Approach to Thermal Equilibrium in Biomolecular Simulation

  • Chapter
New Algorithms for Macromolecular Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 49))

Abstract

The evaluation of molecular dynamics models incorporating temperature control methods is of great importance for molecular dynamics practitioners. In this paper, we study the way in which biomolecular systems achieve thermal equilibrium. In unthermostatted (constant energy) and Nosé-Hoover dynamics simulations, correct partition of energy is not observed on a typical MD simulation timescale. We discuss the practical use of numerical schemes based on Nosé-Hoover chains, Nosé-Poincaré and recursive multiple thermostats (RMT) [8], with particular reference to parameter selection, and show that RMT appears to show the most promise as a method for correct thermostatting. All of the MD simulations were carried out using a variation of the CHARMM package in which the Nosé-Poincaré, Nosé-Hoover Chains and RMT methods have been implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan and M. Karplus, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comp. Chem, 4 (1983), pp. 187–217

    Article  Google Scholar 

  2. A.D. MacKerell Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher III, B. Roux, M. Schlenkrich, J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, An all-atom empirical potential for molecular modeling and dynamics of proteins, J. Phys. Chem., 102 (1998), pp. 3586–3616

    Google Scholar 

  3. S. Jang and G. Voth, Simple reversible molecular dynamics algorithms for Nosé-Hoover chain dynamics, J. Chem. Phys. 110: 3263 (1999)

    Article  Google Scholar 

  4. S.D. Bond and B.B. Laird and B.J. Leimkuhler, The Nosé-Poincaré method for constant temperature molecular dynamics, J. Comp. Phys., 151, 114, 1999

    Article  MathSciNet  Google Scholar 

  5. S. Nosé, A molecular dynamics method for simulation in the canonical ensemble, Mol. Phys., 52, 255, 1984

    Google Scholar 

  6. Yi Liu and Mark E. Tuckerman, Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble, J. Chem. Phys, 112, 1685–1700, 2000

    Article  Google Scholar 

  7. W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31, 1695 (1985)

    Article  Google Scholar 

  8. B. J. Leimkuhler and C. R. Sweet, Hamiltonian formulation for recursive multiple thermostats in a common timescale, SIADS, 4, No. 1, pp. 187–216, 2005

    MathSciNet  Google Scholar 

  9. B.B. Laird and J.B. Sturgeon, Symplectic algorithm for constant-pressure molecular dynamics using a Nosé-Poincaré thermostat, J. Chem. Phys., 112, 3474, 2000

    Article  Google Scholar 

  10. Hernandez, E. Metric-tensor flexible-cell algorithm for isothermal-isobaric molecular dynamics simulations J. Chem. Phys., 115, 10282–10291, 2001

    Article  Google Scholar 

  11. Dahlberg, Laaksonen and Leimkuhler, in preparation

    Google Scholar 

  12. G.J. Martyna and M.L. Klein and M. Tuckerman, Nosé-Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys., 97, 2635, 1992

    Article  Google Scholar 

  13. B.J. Leimkuhler and C.R. Sweet, The canonical ensemble via symplectic integrators using Nosé and Nosé-Poincaré chains, J. Chem. Phys., 121, 1, 2004

    Article  Google Scholar 

  14. B.B. Laird and B.J. Leimkuhler, A generalized dynamical thermostatting technique, Phys. Rev. E, 68, 16704, 2003

    Article  Google Scholar 

  15. S. Nosé, An improved symplectic integrator for Nosé-Poincaré thermostat, J. Phys. Soc. Jpn, 70, 75, 2001

    Article  Google Scholar 

  16. C.P. Dettmann, Hamiltonian for a restricted isoenergetic thermostat, Phys. Rev. E, 60, 7576, 1999

    Article  Google Scholar 

  17. C.R. Sweet, Hamiltonian thermostatting techniques for molecular dynamics simulation, Ph.D. Dissertation, University of Leicester, 2004

    Google Scholar 

  18. B. Laird, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barth, E., Leimkuhler, B., Sweet, C. (2006). Approach to Thermal Equilibrium in Biomolecular Simulation. In: Leimkuhler, B., et al. New Algorithms for Macromolecular Simulation. Lecture Notes in Computational Science and Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31618-3_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-31618-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25542-0

  • Online ISBN: 978-3-540-31618-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics