Skip to main content

Modeling and Simulation Based Approaches for Investigating Allosteric Regulation in Enzymes

  • Chapter
  • 1269 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 49))

Summary

Understanding complex biological processes such as regulation of enzymes requires development and application of new mathematical and computational models, tools and/or protocols, including homology-based modeling (HM) and molecular dynamics (MD) simulations. We demonstrate how these in silico methods can be used to advance our understanding of complex processes using the allosteric regulation of soluble guanynyl cyclase (sGC) as an example. Future directions for the sGC research are also identified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Barth and T. Schlick. Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN. J. Chem. Phys., 109(5):1617–1632, August 1998.

    Article  Google Scholar 

  2. P. A. Bates, L. A. Kelley, R. M. MacCallum, and M. J. E. Sternberg. Enhancement of protein modelling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. PROTEINS: Struc., Func., and Genetics, Suppl 5:39–46, 2001.

    Article  Google Scholar 

  3. P. A. Bates and M. J. E. Sternberg. Model building by comparison at CASP3: Using expert knowledge and computer automation. PROTEINS: Struc., Func., and Genetics, Suppl 3:47–54, 1999.

    Article  Google Scholar 

  4. E. Bischoff, J.-P. Stasch, F. Mullershausen, M. Russwurm, A. Friebe, and D. Koesling. Effects of the sGC stimulator BAY 41-2272 are not mediated by phosphodiesterase 5 inhibition. Circulation, 110:e320–e321, 2004.

    Article  Google Scholar 

  5. A. A. Canutescu, A. A. Shelenkov, and J. R. L. Dunbrack. A graph theory algorithm for protein side-chain prediction. Protein Science, 12:2001–2014, 2003.

    Article  Google Scholar 

  6. C. Chothia and A. M. Lesk. The relation between the divergence of sequence and structure in proteins. EMBO J., 5:823–836, 1986.

    Google Scholar 

  7. P. Condorelli and S. C. George. In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis. Biophys. J., 80:2110–2119, 2001.

    Article  Google Scholar 

  8. B. Contreras-Moreira and P. A. Bates. Domain Fishing: A first step in protein comparative modeling. Bioinformatics, 18:1141–1142, 2002.

    Article  Google Scholar 

  9. T. Darden, D. York, and L. Pedersen. Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J. Chem. Phys., 98(12):10089–10092, 1993.

    Article  Google Scholar 

  10. Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman. A pointcharge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comp. Chem., 24:1999–2012, 2003.

    Article  Google Scholar 

  11. C. J. Epstein, R. F. Goldberger, and C. B. Anfinsen. The genetic control of tertiary protein structure: Studies with model systems. Cold Springs Harb. Symp. Quant. Biol., 28:439, 1963.

    Google Scholar 

  12. N. Foloppe and A. D. MacKerell, Jr. All-atom empirical force field for nucleic acids: I. parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comp. Chem., 21:86–104, 2000.

    Article  Google Scholar 

  13. A. Friebe, M. Russwurm, E. Mergia, and D. Koesling. A point-mutated guanylyl cyclase with features of the YC-1-stimulated enzyme: Implications for the YC-1 binding site? Biochemistry, 38:15253–15257, 1999.

    Article  Google Scholar 

  14. H. Grubmüller, H. Heller, A. Windemuth, and K. Schulten. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation, 6:121–142, 1991.

    Google Scholar 

  15. A. J. Hobbs. Soluble guanylate cyclase: The forgotten sibling. Trends Pharmacol. Sci., 18:484–491, 1997.

    Google Scholar 

  16. W. F. Humphrey, A. Dalke, and K. Schulten. VMD-Visual Molecular Dynamics. J. Mol. Graphics, 14:33–38, 1996.

    Article  Google Scholar 

  17. J. A. Izaguirre, D. P. Catarello, J. M. Wozniak, and R. D. Skeel. Langevin stabilization of molecular dynamics. J. Chem. Phys., 114(5):2090–2098, Feb. 1, 2001.

    Article  Google Scholar 

  18. J. A. Izaguirre and S. S. Hampton. Shadow Hybrid Monte Carlo: An efficient propagator in phase space of macromolecules. J. Comp. Phys., 200:581–604, 2004.

    Article  MATH  Google Scholar 

  19. J. A. Izaguirre, S. Reich, and R. D. Skeel. Longer time steps for molecular dynamics. J. Chem. Phys., 110(19):9853–9864, May 15, 1999.

    Article  Google Scholar 

  20. C. Jarzynski. Nonequilibrium equality for free energy differences. Physical Review Letters, 78:2690–2693, 1997.

    Article  Google Scholar 

  21. C. Jarzynski. Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech., Theory and Exp., page Online P09005, 2004.

    Google Scholar 

  22. Z. Jia and B. Leimkuhler. A projective thermostatting dynamics technique. Multiscale Model. Simul., A SIAM Interdisciplinary Journal, 4(2):563–583, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. S. Johnson and J. P. Overington. A structural basis for sequence comparisons: An evaluation of scoring methodologies. J. Mol. Biol., 233:716–738, 1993.

    Article  Google Scholar 

  24. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R.W. Impey, and M. L. Klein. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79:926–935, 1983.

    Article  Google Scholar 

  25. L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys., 151:283–312, 1999.

    Article  MATH  Google Scholar 

  26. K. Kholmurodov, W. Smith, K. Yasuoka, T. Darden, and T. Ebisuzaki. A smooth-particle mesh Ewald method for DL_POLY molecular dynamics simulation package on the Fujitsu VPP700. Journal of Computational Chemistry, 21(13):1187–1191, 2000.

    Article  Google Scholar 

  27. M. Koglin, J. P. Stasch, and S. Behrends. BAY 41-2272 activates two isoforms of nitric oxide-sensitive guanylyl cyclase. Biochem. Biophys. Res. Commun., 292:1057–1062, 2002.

    Article  Google Scholar 

  28. M. Lamothe, F.-J. Chang, R. Shirokov, and A. Beuve. Functional characterization of nitric oxide and YC-1 activation of soluble guanylyl cyclase: Structural implication for the YC-1 binding site? Biochemistry, 43:3039–3048, 2004.

    Article  Google Scholar 

  29. M. C. Lee, J. Deng, J. M. Briggs, and Y. Duan. Large scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants. Biophysical J. BioFAST, page doi:10.1529/biophysj.104.058446, 2005.

    Google Scholar 

  30. Q. Ma and J. A. Izaguirre. Targeted mollified Impulse-a multiscale stochastic integrator forlong molecular dynamics simulations. Multiscale Model. Simul., A SIAM Interdisciplinary Journal, 2(1):1–21, Nov 2003.

    Article  MathSciNet  Google Scholar 

  31. Q. Ma, J. A. Izaguirre, and R. D. Skeel. Verlet-I/r-RESPA/Impulse is limited by nonlinear instability. SIAM J. on Sci. Comput., 24(6):1951–1973, May 2003.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Makino, H. Matsuda, E. Obayashi, Y. Shiro, T. Iizuka, and H. Hori. EPR characterization of axial bond in metal center of native and cobalt-substituted guanylate cyclase. J. Biol. Chem., 274:7714–7723, 1999.

    Article  Google Scholar 

  33. M. A. Marti-Renom, A. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. biomol. Struct., 29:291–325, 2000.

    Article  Google Scholar 

  34. T. Matthey, T. Cickovski, S. Hampton, A. Ko, Q. Ma, T. Slabach, and J. A. Izaguirre. PROTOMOL: an object-oriented framework for prototyping novel algorithms for molecular dynamics. ACM Trans. Math. Softw., 30:237–265, 2004.

    Article  MATH  Google Scholar 

  35. S. Park, F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J. Chem. Phys., 119:3559–3566, 2003.

    Article  Google Scholar 

  36. P. Procacci, E. Paci, T. Darden, and M. Marchi. ORAC: A molecular dynamics program to simulate complex molecular systems with realistic electrostatic interactions. J. Comp. Chem., 18:1848–1862, 1997.

    Article  Google Scholar 

  37. C. Sander and R. Schneider. Database of homology-derived protein structures and the structural meaning of sequence alignment. PROTEINS: Struc., Func., and Genetics, 9:56–68, 1991.

    Article  Google Scholar 

  38. A. Sandu and T. Schlick. Masking resonance artifacts in force-splitting methods for biomolecular simulations by extrapolative Langevin dynamics. J. Comput. Phys, 151(1):74–113, May 1, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. Simonson, G. Archontis, and M. Karplus. Free energy simulations come of age: Protein-ligand recognition. Acc. Chem. Res., 35:430–437, 2002.

    Article  Google Scholar 

  40. R. D. Skeel, I. Tezcan, and D. J. Hardy. Multiple grid methods for classical molecular dynamics. J. Comp. Chem., 23(6):673–684, March 2002.

    Article  Google Scholar 

  41. ??J. Sopkova-de Oliveira Santos, V. C. I. Bureau, and S. Rault. YC-1, an activation inductor of soluble guanylyl cyclase. Acta Crystallographica Section C, 56:1035–1036, 2000.

    Article  Google Scholar 

  42. J. P. Stasch, E. M. Becker, C. Alonso-Alija, H. Apeler, K. Dembowsky, A. Feurer, R. Gerzer, T. Minuth, E. Perzborn, U. Pleiss, H. Schroder, W. Schroeder, E. Stahl, W. Steinke, A. Straub, and M. Schramm. NO-independent regulatory site on soluble guanylate cyclase. Nature, 410:212–215, 2001.

    Article  Google Scholar 

  43. J. J. P. Stewart. MOPAC: A semiempirical molecular obital program. J. of Computer-Aided Molecular Design, 4:1–105, 1990.

    Article  MATH  Google Scholar 

  44. T. Tomita, T. Ogura, S. Tsuyama, Y. Imai, and T. Kitagawa. Effects of GTP on bound nitric oxide of soluble guanylate cyclase probed by resonance raman spectroscopy. Biochemistry, 36:10155–10160, 1997.

    Article  Google Scholar 

  45. M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics. J. Chem. Phys., 97(3):1990–2001, 1992.

    Article  Google Scholar 

  46. G. Zimmermann, D. Zhou, and R. Taussig. Mutations uncover a role for two magnesium ions in the catalytic mechanism of adenylyl cyclase. J. Biol. Chem., 273:19650–19655, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ma, M.Q., Sugino, K., Wang, Y., Gehani, N., Beuve, A.V. (2006). Modeling and Simulation Based Approaches for Investigating Allosteric Regulation in Enzymes. In: Leimkuhler, B., et al. New Algorithms for Macromolecular Simulation. Lecture Notes in Computational Science and Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31618-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-31618-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25542-0

  • Online ISBN: 978-3-540-31618-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics