Skip to main content

Electronic Structure Calculations for Nanomolecular Systems

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

The electronic structure constitutes the fundamentals on which a reliable quantitative knowledge of the electrical properties of materials should be based. Here, we first present an overview of the methods employed to elucidate the ground-state electronic properties, with an emphasis on the results of Density Functional Theory (DFT) calculations on selected cases of (bio)molecular nanostructures that are currently exploited as potential candidates for devices. In particular, we show applications to carbon nanotubes and assemblies of DNA-based homoguanine stacks. Then, to move ahead from the electronic properties to the computation of measurable features in the operation of nanodevices (e.g., transport characteristics, optical yield), we proceed along two different lines to address two non-negligible issues: the role of excitations and the role of contacts. On one hand, for an accurate simulation of charge transport, as well as of optoelectronic features, the ground state is not sufficient and one needs to take into account the excited states of the system: to this aim, we introduce Time-Dependent DFT (TDDFT), we describe the TDDFT frameworks and their relation to the optical properties of materials. We present the application of TDDFT to compute the optical absorption spectra of fluorescent proteins and of DNA bases. On the other hand, the details of the conductor-leads interfaces are of crucial importance to determine the current under applied voltage, and one should compute the transport properties for a device geometry that mimics the experimental setup: to this aim, we introduce a novel development based on Wannier functions. The method, which is a framework for both an in-depth analysis of the electronic states and the plug-in of tight-binding parameters into the Green’s function, is described with the aid of examples on nanostructures potentially relevant for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Szabo and N.S. Ostlund: Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory, (Dover Publications, Mineola NY 1996)

    Google Scholar 

  2. T. Helgaker, P. Jørgensen, and J. Olsen: Molecular Electronic-Structure Theory, (Wiley, Chechester 2000)

    Google Scholar 

  3. J. Ĺ poner, J. Leszczynski, and P. Hobza: Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation, J. Phys. Chem. 100, 1965 (1996)

    Article  Google Scholar 

  4. J. Ĺ poner, J. Leszczynski, and P. Hobza: Nature of Nucleic Acid-Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs, J. Phys. Chem. 100, 5590 (1996)

    Article  Google Scholar 

  5. A Primer in Density Functional Theory, Lecture Notes in Physics 620, ed. by C. Fiolhais, F. Nogueira, and M. Marques (Springer, Berlin Heidelberg New York 2003).

    Google Scholar 

  6. W. Kohn: Nobel Lecture: Electronic structure of matterwave functions and density functionals, Rev. Mod. Phys. 71, 1253 (1999).

    Article  ADS  Google Scholar 

  7. W. Kohn: In Theory of the Inhomogeneous Electron Gas, ed. by S. Lunqvist and N.H. March (Plenum Press, New York 1983)

    Google Scholar 

  8. R.M. Dreizler and E.K.U. Gross: Density Functional Theory, an Approach to the Quantum Many Body Problem, (Springer, Berlin Heidelberg New York 1990)

    MATH  Google Scholar 

  9. W. Koch and M.C. Holthausen: A chemist's guide to eensity functional theory (Wiley-VCH, Weinheim 2000)

    Google Scholar 

  10. P. Hohenberg and W. Kohn: Inhomogeneus Electron Gas, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  11. W. Kohn and L.J. Sham: Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  12. R.A. Friesner and B.D. Dunietz: Large-Scale ab Initio Quantum Chemical Calculations on Biological Systems, Acc. Chem. Res. 34, 351 (2001)

    Article  Google Scholar 

  13. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abrunña, P.L. McEuen, and D.C. Ralph: Coulomb blockade andthe Kondo effect in single-atom transistors, Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  14. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park: Kondo resonance in a single-molecule transistor, Nature 417, 725 (2002)

    Article  ADS  Google Scholar 

  15. P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L.P. Kouwenhoven, H.S.J. van der Zant: Electron-hole symmetry in a semiconducting carbon nanotube quantum dot, Nature 429, 389 (2002)

    Article  ADS  Google Scholar 

  16. S. Oberholzer, E.V. Sukhorukov, and C. Schönenberger: Crossover between classical and quantum shot noise in chaotic cavities, Nature 415, 765 (2002)

    ADS  Google Scholar 

  17. E. Di Mauro and C.P. Hollenberg: DNA technology in chip construction, Adv. Mater. 5, 384 (1993)

    Article  Google Scholar 

  18. Y. Xia, J.A. Rogers, K.E. Paul, and G.M. Whitesides: Unconventional Methods for Fabricating and Patterning Nanostructures, Chem. Rev. 99, 1823 (1999)

    Article  Google Scholar 

  19. J.M. Lehn: Perspectives in supramolecular chemistry. From molecular recognition towards molecular information processing and self-organization, Angew. Chem. Int. Ed. 29, 1304 (1990)

    Article  Google Scholar 

  20. G.M. Whitesides and M. Boncheva: Supramolecular Chemistry And Self-assembly Special Feature: Beyond molecules: Self-assembly of mesoscopic and macroscopic components, Proc. Natl. Acad. Sci. USA 99, 4769 (2002)

    Article  ADS  Google Scholar 

  21. J.A. Pople, M. Head-Gordon, D.J. Fox, K. Raghavachari, and L.A. Curtiss: Gaussian-1 theory: A general procedure for prediction of molecular energies, J. Chem. Phys. 90, 5622 (1989); http://www.gaussian.com/

    Article  ADS  Google Scholar 

  22. J.M. Soler, E. Artacho, J.D. Gale, A. Garçia, J. Junquera, P. Ordejón and D. Sánchez-Portal: The Siesta method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14, 2745 (2002); http://www.uam.es/ departamentos/ciencias/fismateriac/siesta/

    Article  ADS  Google Scholar 

  23. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi: Plane-Wave Self-Consistent Field, http://www.pwscf.org

    Google Scholar 

  24. M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler: Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics, Comput. Phys. Commun. 107, 187 (1997); http://www.fhi-berlin.mpg.de/th/fhi98md/

    Article  ADS  MATH  Google Scholar 

  25. S. Ismail-Beigi and T.A. Arias: New algebraic formulation of density functional calculation, Comput. Phys. Commun. 128, 1 (2000); http://dft.physics. cornell.edu/

    Article  ADS  MATH  Google Scholar 

  26. CPMD consortium: Car Parrinello Molecular Dynamics, http://www.cpmd. org

    Google Scholar 

  27. S. Ijima: Helical microtubules of graphitic carbon, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  28. R. Saito, G. Dresselhaus, and M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Google Scholar 

  29. A. Rubio, J.L. Corkill, and M.L. Cohen: Theory of graphitic boron nitride nanotubes, Phys. Rev. B 49, 5081 (1994)

    Article  ADS  Google Scholar 

  30. X. Blase, A. Rubio, S.G. Louie, and M.L. Cohen: Stability and Band Gap Constancy of Boron-Nitride Nanotubes, Europhys. Lett. 28, 335 (1994); Qua-siparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B 51, 6868 (1995)

    ADS  Google Scholar 

  31. R.H. Baughman, A. A. Zakhidov, W.A. de Heer: Carbon Nanotubes–the Route Toward Applications, Science 297, 787 (2002), and references therein

    Article  ADS  Google Scholar 

  32. E. Thune and C. Strunk: Quantum transport in carbon nanotubes, in Lecture Notes in Physics vvv, ppp (yyyy)

    Google Scholar 

  33. S. Heinze, J. Tersoff, and P. Avouris: Carbon nanotube electronics and optoelectronics, in Lecture Notes in Physics vvv, ppp (yyyy)

    Google Scholar 

  34. J. Tersoff and D.R. Hamann: Theory and Application for the Scanning Tunneling Microscope, Phys. Rev. Lett. 50, 1998 (1983)

    Article  ADS  Google Scholar 

  35. A. Rubio, D. Sanchez-Portal, E. Artacho, P. OrdejĂłn, and J.M. Soler: Electronic States in a Finite Carbon Nanotube: A One-Dimensional Quantum Box, Phys. Rev. Lett. 82, 3520 (1999)

    Article  ADS  Google Scholar 

  36. P. Delaney, H.J. Choi, J. Ihm, S.G. Louie, and M.L. Cohen: Broken symmetry and pseudogaps in ropes of carbon nanotubes, Nature 391, 466 (1998)

    Article  ADS  Google Scholar 

  37. M. Ouyang, J.L. Huang, C.L. Cheung, and C.M. Lieber: Energy Gaps in “Metallic” Single-Walled Carbon Nanotubes, Science 292, 702 (2001)

    Article  ADS  Google Scholar 

  38. A. Rubio: Spectroscopic Properties and STM Images of Carbon Nanotubes, Appl. Phys. A 68, 275 (1999)

    Article  ADS  Google Scholar 

  39. Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D. Tománek: Spectroscopic characterization of Stone-Wales defects in nanotubes, Phys. Rev. B 69, R121413 (2004)

    Article  ADS  Google Scholar 

  40. Ph. Lambin, V. Meunier, and A. Rubio. In Science and Applications of Carbon Nanotubes, ed by D. Tomanek, R.J. Enbody (Kluwer Academic, New York 2000), p. 17

    Google Scholar 

  41. D. Orlikowski, M. Buongiorno Nardelli, J. Bernholc, and C. Roland: Theoretical STM signatures and transport properties of native defects in carbon nanotubes, Phys. Rev. B 61, 14194 (2000)

    Article  ADS  Google Scholar 

  42. Long-Range Charge Transfer in DNA, vol. I and II, ed. by G. Schuster (Topics in Current Chemistry 236 and 237, Springer, Berlin Heidelberg New York 2004)

    Google Scholar 

  43. P.J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez-Herrero, P. Herrero, A.M. Baró, P. Ordejón, J.M. Soler, and E. Artacho: Absence of dc-Conductivity in λ-DNA, Phys. Rev. Lett. 85, 4992 (2000)

    Article  ADS  Google Scholar 

  44. F.L. Gervasio, P. Carloni, and M. Parrinello: Electronic Structure of Wet DNA, Phys. Rev. Lett. 89, 108102 (2002)

    Article  ADS  Google Scholar 

  45. R.N. Barnett, C.L. Cleveland, A. Joy, U. Landmann, and G.B. Schuster: Charge Migration in DNA: Ion-Gated Transport, Science 294, 567 (2001)

    Article  ADS  Google Scholar 

  46. A. Calzolari, R. Di Felice, E. Molinari, and A. Garbesi: Electron Channels in Biomolecular Nanowires, J. Phys. Chem. B 108, 2509 (2004); Correction: J. Phys. Chem. B 108, 13058 (2004)

    Article  Google Scholar 

  47. C.J. Murphy, M.A. Arkin, Y. Jenkins, N.D. Ghatlia, S. Bossman, N.J. Turro, and J.K. Barton: Long Range Photoinduced Electron Transfer through a DNA Helix, Science 262, 1026 (1993)

    Article  ADS  Google Scholar 

  48. D.B. Hall, R.E. Holmlin, and J.K. Barton: Oxidative DNA damage through long-range electron transfer, Nature 382, 731 (1996)

    Article  ADS  Google Scholar 

  49. E. Meggers, M.E. Michel-Beyerle, and B. Giese: Sequence Dependent Long Range Hole Transport in DNA, J. Am. Chem. Soc. 120, 12950 (1998)

    Article  Google Scholar 

  50. B. Giese, J. Amaudrut, A.K. Köhler, M. Spormann, and S. Wessely: Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling, Nature 412, 318 (2001)

    Article  ADS  Google Scholar 

  51. P.T. Henderson, D. Jones, G. Hampikian, Y. Kan, and G. Schuster: Longdistance charge transport in duplex DNA: The phonon-assisted polaron-like hopping mechanism, Proc. Natl. Acad. Sci. USA 96, 8353 (1999)

    Article  ADS  Google Scholar 

  52. H.W. Fink and C. Schönenberger: Electrical conduction through DNA molecules, Nature 398, 407 (1999)

    Article  ADS  Google Scholar 

  53. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph: DNA-templated assembly and electrode attachment of a conducting silver wire, Nature 391, 775 (1998)

    Article  ADS  Google Scholar 

  54. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker: Direct measurement of electrical transport through DNA molecules, Nature 403, 635 (2000)

    Article  ADS  Google Scholar 

  55. A.Y. Kasumov, M. Kociak, S. GuerĂłn, B. Reulet, V.T. Volkov, D.V. Klinov, and H. Bouchiat: Proximity-Induced Superconductivity in DNA, Science 291, 280 (2001)

    Article  ADS  Google Scholar 

  56. D. Porath, N. Lapidot, and J. GĂłmez-Herrero: DNA-based devices, in Lecture Notes in Physics vvv, xxx (yyyy)

    Google Scholar 

  57. R.A. Marcus and N. Sutin: Electron transfers in chemistry and biology, Biochim. Biophys. Acta 811, 265 (1985)

    Google Scholar 

  58. M. Bixon and J. Jortner: Electron Transfer. From Isolated Molecules to Bio-molecules, Adv. Chem. Phys. 106, 35 (1999)

    Google Scholar 

  59. A. Nitzan: Electron transmission through molecules and molecular interfaces, Annu. Rev. Phys. Chem. 52, 681 (2001)

    Article  ADS  Google Scholar 

  60. A. Nitzan: The relationship between electron transfer rate and molecular conduction. 2. The sequential hopping case, Isr. J. Chem. 42, 163 (2002)

    Article  Google Scholar 

  61. J. Jortner, A. Nitzan, and M. A. Ratner: Foundations of molecular electronics – charge transport in molecular conduction junctions, in Lecture Notes in Physics xxx, ppp (yyyy)

    Google Scholar 

  62. R. Di Felice, A. Calzolari, E. Molinari, and A. Garbesi: Ab initio study of model guanine assemblies: The role of π–π coupling and band transport, Phys. Rev. B 65, 045104 (2002)

    Article  ADS  Google Scholar 

  63. M. Bixon and J. Jortner: Charge Transport in DNA Via Thermally Induced Hopping, J. Am. Chem. Soc. 123, 12556 (2001)

    Article  Google Scholar 

  64. J. Jortner, M. Bixon, A.A. Voityuk, and N. Rösch: Superexchange Mediated Charge Hopping in DNA, J. Phys. Chem. A 106, 7599 (2002)

    Article  Google Scholar 

  65. K. Phillips, Z. Dauter, A.I.H. Murchie, D.M.J. Lilley, and B. Luisi: The crystal structure of a parallel-stranded guanine tetraplex at 0.95 Ă…resolution, J. Mol. Biol. 273, 171 (1997)

    Article  Google Scholar 

  66. G. Gottarelli, G.P. Spada, and A. Garbesi: Self-assembled Columnar Mesophases Based on Guanine-related Molecules. In Comprehensive Supramolecular Chemistry, vol 9, ed by J.L. Atwood, J.E.D. Davies, D. Mac-Nicol, F. Vögtle (Pergamon, Oxford UK 1996)

    Google Scholar 

  67. S.S. Alexandre, E. Artacho, J.M. Soler, and H. Chacham: Small Polarons in Dry DNA, Phys. Rev. Lett. 91, 108105 (2003)

    Article  ADS  Google Scholar 

  68. J.T. Davis: G-Quartets 40 Years Later: From 5-GMP to Molecular Biology and Supramolecular Chemistry, Angew. Chem. Int. Ed. 43, 668 (2004)

    Article  Google Scholar 

  69. R.G. Endres, D.L. Cox, and R.R.P. Singh: Colloquium: The quest for high-conductance DNA, Rev. Mod. Phys. 76, 195 (2004)

    Article  ADS  Google Scholar 

  70. A. Calzolari, R. Di Felice, E. Molinari, and A. Garbesi: G-quartet biomolecular nanowires, Appl. Phys. Lett. 80, 3331 (2002)

    Article  ADS  Google Scholar 

  71. E.K.U. Gross, J. Dobson, and M. Petersilka: Density Functional Theory of Time Dependent Phenomena. In: Density Functional Theory II, ed. by R.F. Nalewajski (Topics in Current Chemistry 181, Springer, Berlin Heidelberg New York 1996) pp 81–172.

    Chapter  Google Scholar 

  72. M.A.L. Marques and E.K.U. Gross: Time Dependent Density Functional Theory. In: A Primer in Density Functional Theory, Lecture Notes in Physics 620, ed. by C. Fiolhais, F. Nogueira, and M. Marques (Springer, Berlin Heidelberg New York 2003) pp 144–184.

    Google Scholar 

  73. R. van Leeuwen: Key concepts of time-dependent density-functional theory, Int. J. Mod. Phys. B 15, 1969 (2001)

    Article  ADS  MATH  Google Scholar 

  74. R. Car and M. Parrinello: Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett. 55, 2471 (1985)

    Article  ADS  Google Scholar 

  75. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1999)

    Article  ADS  Google Scholar 

  76. K. Burke, M. Petersilka, and E.K.U. Gross: A hybrid functional for the exchange-correlation kernel in time-dependent density functional theory. In: Recent Advances in Density Functional Methods, ed. by P. Fantucci and A. Bencini (World Scientific, Singapore 2002) pp 67–79

    Google Scholar 

  77. G. Onida, L. Reining, and A. Rubio: Electronic excitations: density-functional versus many-body Green's-function approaches, Rev. Mod. Phys. 74, 601 (2002)

    Article  ADS  Google Scholar 

  78. E. Runge and E.K.U. Gross: Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  79. N.T. Maitra, K. Burke, and C. Woodward: Memory in Time-Dependent Density Functional Theory, Phys. Rev. Lett. 89, 023002 (2002)

    Article  ADS  Google Scholar 

  80. R. van Leeuwen: Mapping from Densities to Potentials in Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 82, 3863 (1999)

    Article  ADS  Google Scholar 

  81. R. van Leeuwen: Causality and Symmetry in Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 80, 1280 (1998)

    Article  ADS  Google Scholar 

  82. M. Petersilka, U.J. Gossmann, and E.K.U. Gross: Excitation Energies from Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 76, 1212 (1996)

    Article  ADS  Google Scholar 

  83. M. Petersilka and E.K.U. Gross: Spin-multiplet energies from time-dependent density functional theory, Int. J. Quantum Chem. 60, 1393 (1996)

    Article  Google Scholar 

  84. M. Casida. In Recent Developments and Applications in Density Functional Theory, ed. by J. Seminario (Elsevier, Amsterdam 1996) p 391

    Google Scholar 

  85. I. Vasiliev, S. Ă–gut, and J.R. Chelikowsky: Ab Initio Excitation Spectra and Collective Electronic Response in Atoms and Clusters, Phys. Rev. Lett. 82, 1919 (1999)

    Article  ADS  Google Scholar 

  86. I. Vasiliev, S. Ă–gut, and J.R. Chelikowsky: First-principles density-functional calculations for optical spectra of clusters and nanocrystals, Phys. Rev. B 65, 115416 (2002)

    Article  ADS  Google Scholar 

  87. H. Flocard, S.E. Koonin, and M. S. Weiss: Three-dimensional time-dependent Hartree-Fock calculations: Application to 16O +16O collisions, Phys. Rev. C 17, 1682 (1978)

    Article  ADS  Google Scholar 

  88. K. Yabana and G.F. Bertsch: Time-dependent local-density approximation in real time, Phys. Rev. B 54, 4484 (1996); K. Yabana and G.F. Bertsch: Z. Phys. D 42, 219 (1997); K. Yabana and G.F. Bertsch: Oscillator strengths with pseudopotentials, Phys. Rev. A 58, 2604 (1999)

    Article  ADS  Google Scholar 

  89. K. Yabana and G.F. Bertsch: Application of the time-dependent local density approximation to optical activity, Phys. Rev. A 60, 1271 (1999)

    Article  ADS  Google Scholar 

  90. M.A.L Marques, X. LĂłpez, D. Varsano, A. Castro, and A. Rubio: ime-Dependent Density-Functional Approach for Biological Chromophores: The Case of the Green Fluorescent Protein, Phys. Rev. Lett. 90, 258101 (2003)

    Article  ADS  Google Scholar 

  91. M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio: octopus: a first-principles tool for excited electronion dynamics, Comput. Phys. Commun. 151, 60 (2003). The code OCTOPUS is available at http://www.tddft. org/programs/octopus

    Article  ADS  Google Scholar 

  92. W.G. Schmidt, S. Glutsch, P.H. Hahn, and F. Bechstedt: Efficient O(N2) method to solve the Bethe-Salpeter equation, Phys. Rev. B 67, 085307 (2003)

    Article  ADS  Google Scholar 

  93. http://www.abinit.org

    Google Scholar 

  94. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz: http://www. wien2k.at

    Google Scholar 

  95. M. Städele, J.A. Majewski, P. Vogl, and A. Görling: Exact Kohn-Sham Exchange Potential in Semiconductors, Phys. Rev. Lett. 79, 2089 (1997)

    Article  ADS  Google Scholar 

  96. C.A. Ullrich, U.J. Gossmann, and E. K. U. Gross: Time-Dependent Optimized Effective Potential, Phys. Rev. Lett. 74, 872 (1995)

    Article  ADS  Google Scholar 

  97. L. Reining, V. Olevano, A. Rubio, and G. Onida: Excitonic Effects in Solids Described by Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 88, 066404 (2002); F. Sottile, V. Olevano, and L. Reining: Parameter-Free Calculation of Response Functions in Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 91, 056402 (2003); R. Del Sole, G. Adragna, V. Olevano, and L. Reining: Long-range behavior and frequency dependence of exchange-correlation kernels in solids, Phys. Rev. B 67, 045207 (2003)

    Article  ADS  Google Scholar 

  98. A. Marini, R. Del Sole, and A. Rubio: Bound Excitons in Time-Dependent Density-Functional Theory: Optical and Energy-Loss Spectra, Phys. Rev. Lett. 91, 256402 (2003)

    Article  ADS  Google Scholar 

  99. S. Albrecht, L. Reining, R. Del Sole, and G. Onida: Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors, Phys. Rev. Lett. 80, 4510 (1998); L.X. Benedict, E.L. Shirley, and R.B. Bohn: Optical Absorption of Insulators and the Electron-Hole Interaction: An Ab Initio Calculation, Phys. Rev. Lett. 80, 4514 (1998); M. Rohlfing and S.G. Louie: Electron-Hole Excitations in Semiconductors and Insulators, Phys. Rev. Lett. 81, 2312 (1998); M. Rohlfing and S.G. Louie: Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 4927 (2000)

    Article  ADS  Google Scholar 

  100. Y.H. Kim and A. Görling: Excitonic Optical Spectrum of Semiconductors Obtained by Time-Dependent Density-Functional Theory with the Exact-Exchange Kernel, Phys. Rev. Lett. 89, 096402 (2002); Exact Kohn-Sham exchange kernel for insulators and its long-wavelength behavior, Phys. Rev. B 66, 035114 (2002)

    Article  ADS  Google Scholar 

  101. X. Gonze, Ph. Ghosez, and R.W. Godby: Density-Polarization Functional Theory of the Response of a Periodic Insulating Solid to an Electric Field, Phys. Rev. Lett. 74, 4035 (1995); Density-Functional Theory of Polar Insulators, Phys. Rev. Lett. 78, 294 (1997); Polarization Dependence of the Exchange Energy, Phys. Rev. Lett. 78, 2029 (1997); Ph. Ghosez, X. Gonze, and R.W. Godby: Long-wavelength behavior of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems, Phys. Rev. B 56, 12811 (1997)

    Article  ADS  Google Scholar 

  102. R. Resta: Macroscopic polarization in crystalline dielectrics: the geometric phase approach, Rev. Mod. Phys. 66, 899 (1994)

    Article  ADS  Google Scholar 

  103. G.F. Bertsch, J.-I. Iwata, A. Rubio, and K. Yabana: Real-space, real-time method for the dielectric function, Phys. Rev. B 62, 7998 (2000)

    Article  ADS  Google Scholar 

  104. P.L. de Boeij, F. Kootstra, J.A. Berger, R. van Leeuwen, and J.G. Snijders: Current density functional theory for optical spectra: A polarization functional, J. Chem. Phys. 115, 1995 (2001); M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger and J.G. Snijders: Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers, J. Chem. Phys. 118, 1044 (2003); G. Vignale and W. Kohn: Current-Dependent Exchange-Correlation Potential for Dynamical Linear Response Theory, Phys. Rev. Lett. 77, 2037 (1996)

    Article  ADS  Google Scholar 

  105. T. Kreibich and E.K.U. Gross: Multicomponent Density-Functional Theory for Electrons and Nuclei, Phys. Rev. Lett. 86, 2984 (2001)

    Article  ADS  Google Scholar 

  106. T. Kreibich: Multicomponent Density-Functional Theory for Molecules in Strong Laser Pulses, PhD Thesis University of WĂĽrzburg, Germany (2000)

    Google Scholar 

  107. E.E. Koch and A. Otto: Optical absorption of benzene vapour for photon energies from 6 eV to 35 eV, Chem. Phys. Lett. 12, 476 (1972)

    Article  ADS  Google Scholar 

  108. S. Grimme and M. Parac: Chem. Phys. Chem. 3, 292 (2003)

    Google Scholar 

  109. T.M.H. Creemers, A.J. Lock, V. Subramaniam, T.M. Jovin, and S. Völker: Photophysics and optical switching in green fluorescent protein mutants, Proc. Natl. Acad. Sci. U.S.A. 97, 2974 (2000); Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning, Nature Struct. Biol. 6, 557 (1999)

    Article  ADS  Google Scholar 

  110. S.B. Nielsen, A. Lapierre, J.U. Andersen, U.V. Pedersen, S. Tomita, and L.H. Andersen: Absorption Spectrum of the Green Fluorescent Protein Chromophore Anion In Vacuo, Phys. Rev. Lett. 87, 228102 (2001)

    Article  ADS  Google Scholar 

  111. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus: CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem. 2, 187 (1983)

    Article  Google Scholar 

  112. M.J. Field, P.A. Bash, and M. Karplus: A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations, J. Comput. Chem. 11, 700 (1990)

    Article  Google Scholar 

  113. J. Gao: Methods and applications of combined quantum mechanical and molecular mechanics potentials. In Reviews in Computational Chemistry, vol 7, ed by K.B. Lipkowitz, D.B. Boyd (VCH, New York 1995), pp 119–185

    Google Scholar 

  114. M.J.S. Dewar, E. Zoebisch, E.F. Healy, and J.J.P. Stewart: Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, J. Am. Chem. Soc. 107, 3902 (1995)

    Article  Google Scholar 

  115. D. Varsano, A. Castro, M.A.L. Marques, R. Di Felice, and A. Rubio: A TDDFT study of excited states of DNA bases and base assemblies, work in progress

    Google Scholar 

  116. C.A. Sprecher and W.C. Johnson: Circular dichroism of the nucleic acid monomers, Biopolymers 16, 2243 (1977)

    Article  Google Scholar 

  117. L.B. Clark, G.G. Peschel, and I. Tinoco Jr.: Vapor Spectra and Heats of Vaporization of Some Purine and Pyrimidine Bases, J. Phys. Chem. 69, 3615 (1965)

    Google Scholar 

  118. B. Mennucci, A. Tonniolo, and J. Tomasi: Theoretical Study of the Photophysics of Adenine in Solution: Tautomerism, Deactivation Mechanisms, and Comparison with the 2-Aminopurine Fluorescent Isomer, J. Phys. Chem. A 105, 4749 (2001)

    Article  Google Scholar 

  119. A. Broo: A Theoretical Investigation of the Physical Reason for the Very Different Luminescence Properties of the Two Isomers Adenine and 2-Aminopurine, J. Phys. Chem. A 102, 526 (1998)

    Article  Google Scholar 

  120. A.D. Becke: A new mixing of Hartree Fock and local density-functional theories, J. Chem. Phys. 98, 1372 (1993); A.D. Becke: Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  121. C. Jamorski, M.E. Casida, and D.R. Salahub: Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study, J. Chem. Phys. 104, 5134 (1996)

    Article  ADS  Google Scholar 

  122. C.E. Crespo-Hernandez, B. Cohen, P.M. Hare, and B. Kohler: Ultrafast Excited-State Dynamics in Nucleic Acids, Chem. Rev. 104, 1977 (2004)

    Article  Google Scholar 

  123. P.R. Callis: Electronic states and luminescence of nucleic acid systems, Annu. Rev. Phys. Chem. 34 329 (1983)

    Article  ADS  Google Scholar 

  124. G.H. Wannier: The Structure of Electronic Excitation Levels in Insulating Crystals, Phys. Rev. 52, 191 (1937)

    Article  ADS  MATH  Google Scholar 

  125. A.H. Romero, P.L. Silvestrelli, and M. Parrinello: Compton Anisotropy from Wannier Functions in the Case of Ice Ih, phys. stat. sol. (b) 220, 703 (2000)

    Article  ADS  Google Scholar 

  126. S.F. Boys: Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another, Rev. Mod. Phys. 32, 296 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  127. R. King-Smith and D. Vanderbilt: Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993)

    Article  ADS  Google Scholar 

  128. S. Goedecker: Linear scaling electronic structure methods, Rev. Mod. Phys. 71, 1085 (1999)

    Article  ADS  Google Scholar 

  129. A.J. Williamson, R.Q. Hood, and J.C. Grossman: Linear-Scaling Quantum Monte Carlo Calculations, Phys. Rev. Lett. 87, 246406 (2001)

    Article  ADS  Google Scholar 

  130. F. Gygi, J.-L. Fattebert, and E. Schwegler: Computation of Maximally Localized Wannier Functions using a simultaneous diagonalization algorithm, Comput. Phys. Comm. 155, 1 (2003)

    Article  ADS  Google Scholar 

  131. L. Bernasconi and P.A. Madden: Optimally localized Wannier functions within the Vanderbilt ultrasoft pseudo-potential formalism, J. Mol. Struct. (THEOCHEM) 544, 49 (2001)

    Article  Google Scholar 

  132. A. Calzolari, N. Marzari, I. Souza, and M. Buongiorno Nardelli: Ab initio transport properties of nanostructures from maximally localized Wannier functions, Phys. Rev. B 69, 035108 (2004)

    Article  ADS  Google Scholar 

  133. I. Schnell, G. Czycholl, and C. Albers: Hubbard-U calculations for Cu from first-principle Wannier functions, Phys. Rev. B 65, 075103 (2002)

    Article  ADS  Google Scholar 

  134. W. Ku, H. Rosner, W.E. Pickett, and R.T. Scalettar: Insulating Ferromag-netism in La4Ba2Cu2O10: An Ab Initio Wannier Function Analysis, Phys. Rev. Lett. 89, 167204 (2002)

    Article  ADS  Google Scholar 

  135. I. Paul and G. Kotliar: Thermal transport for many-body tight-binding models, Phys. Rev. B 67, 115131 (2003)

    Article  ADS  Google Scholar 

  136. P.L. Silvestrelli, N. Marzari, D. Vanderbilt, and M. Parrinello: Maximally-localized Wannier functions for disordered systems: Application to amorphous silicon, Sol. St. Commun. 107, 7 (1998)

    Article  ADS  Google Scholar 

  137. P. Fernández, A. Dal Corso, A. Baldereschi, and F. Mauri: First-principles Wannier functions of silicon and gallium arsenide, Phys. Rev. B 55, R1909 (1997)

    Article  ADS  Google Scholar 

  138. B. Sporkmann and H. Bross: Calculation of Wannier functions for zinc-blende-type semiconductors, J. Phys. Cond. Mat. 9, 5593 (1997)

    Article  ADS  Google Scholar 

  139. N. Marzari and D. Vanderbilt: in First-principles calculations for ferroelectrics, vol 436, ed by R.E. Cohen (AIP Conference Proceedings, Woodbury NY 1998) pp 146

    Google Scholar 

  140. B. Sporkmann and H. Bross: Calculation of Wannier functions for fcc transition metals by Fourier transformation of Bloch functions, Phys. Rev. B 49, 10869 (1994)

    Article  ADS  Google Scholar 

  141. I. Schnell, G. Czycholl, and C. Albers: Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab initio Hamiltonians, Phys. Rev. B 68, 245102 (2003)

    Article  ADS  Google Scholar 

  142. G. Cangiani, A. Baldereschi, M. Posternak, and H. Kakauer: Born charge differences of TiO2 polytypes: Multipole expansion of Wannier charge densities, Phys. Rev. B 69, R121101 (2004)

    Article  ADS  Google Scholar 

  143. M. Le Vassor D'yerville, D. Monge, D. Cassagne, and J.P. Albert: Tight-binding method modelling of photonic crystal waveguides, Opt. Quantum Electron. 34, 445 (2002)

    Article  Google Scholar 

  144. D.M. Whittaker and M.P. Croucher: Maximally localized Wannier functions for photonic lattices, Phys. Rev. B 67, 085204 (2003)

    Article  ADS  Google Scholar 

  145. A. García-Martin, D. Hermann, F. Hagmann, K. Busch, and P. Wölfle: Defect computations in photonic crystals: a solid state theoretical approach, Nanotechnology 14, 177 (2003)

    Article  ADS  Google Scholar 

  146. I. Souza, R.M. Martin, N. Marzari, X. Zhao, and D. Vanderbilt: Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen, Phys. Rev. B 62, 15505 (2000)

    Article  ADS  Google Scholar 

  147. P.L. Silvestrelli and M. Parrinello: Water Molecule Dipole in the Gas and in the Liquid Phase, Phys. Rev. Lett. 82, 3308 (1999); Structural, electronic, and bonding properties of liquid water from first principles, J. Chem. Phys. 111, 3572 (1999)

    Article  ADS  Google Scholar 

  148. M. Boero, K. Terakura, T. Ikeshoji, C. C. Liew, and M. Parrinello: Hydrogen Bonding and Dipole Moment of Water at Supercritical Conditions: A First-Principles Molecular Dynamics Study, Phys. Rev. Lett. 85, 3245 (2000)

    Article  ADS  Google Scholar 

  149. S. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc, and M. Buongiorno Nardelli: Spontaneous polarization and piezoelectricity in boron nitride nanotubes, Phys. Rev. B 67, 235406 (2003)

    Article  ADS  Google Scholar 

  150. A. Calzolari, C. Cavazzoni, and M. Buongiorno Nardelli: Electronic and Transport Properties of Artificial Gold Chains, Phys. Rev. Lett. 93, 096404 (2004)

    Article  ADS  Google Scholar 

  151. N. Marzari and D. Vanderbilt: Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  152. I. Souza, N. Marzari, and D. Vanderbilt: Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001)

    Article  ADS  Google Scholar 

  153. WanT package by A. Calzolari, C. Cavazzoni, N. Marzari, and M. Buongiorno Nardelli: an integral approach to ab initio electronic transport from maximally-localized Wannier functions, http://www.wannier-transport.org

    Google Scholar 

  154. O.R. Chalvet and S. Daudel: Localization and Delocalization in Quantum Chemistry vols. I-IV, (Kluwer Academic Publishers, 1975)

    Google Scholar 

  155. D. Vanderbilt: Berry-phase theory of proper piezoelectric response, J. Phys. Chem. Solids. 61, 147 (2000)

    Article  ADS  Google Scholar 

  156. S. Datta: Electronic transport in mesoscopic systems (Cambridge Univ. Press 1995)

    Google Scholar 

  157. K. Stokbro, J. Taylor, M. Brandbyge, and H. Guo: Ab-initio based nonequilibrium Green's function formalism for calculating electron transport in molecular devices, in Lecture Notes in Physics vvv, ppp (yyyy)

    Google Scholar 

  158. A. Di Carlo, A. Pecchia, L. Latessa, T. Frauenheim, and G. Seifert: Tight-binding DFT for molecular electronics (gDFTB), in Lecture Notes in Physics vvv, ppp (yyyy)

    Google Scholar 

  159. N. Bushong and M. Di Ventra: Current-induced effects in nanoscale conductors, in Lecture Notes in Physics vvv, ppp (yyyy)

    Google Scholar 

  160. D.S. Fischer and P.A. Lee: Relation between conductivity and transmission matrix, Phys. Rev. B 23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  161. M. Buongiorno Nardelli: Electronic transport in extended systems: Application to carbon nanotubes, Phys. Rev. B 60, 7828 (1999)

    Article  ADS  Google Scholar 

  162. D. Lee and J. Joannopoulos: Simple scheme for surface-band calculations. I, Phys. Rev. B 23, 4988 (1981)

    Article  ADS  Google Scholar 

  163. F. Garcia-Moliner and V.R. Velasco: Theory of Single and Multiple Interfaces (World Scientific, Singapore 1992)

    Google Scholar 

  164. M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and Kurt Stokbro: Density-functional method for nonequilibrium electron transport, Phys. Rev. B. 65, 165401 (2002)

    Article  ADS  Google Scholar 

  165. Y. Xue, S. Datta, and M.A. Ratner: Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation, J. Chem. Phys. 115, 4292 (2001)

    Article  ADS  Google Scholar 

  166. X. Blase, L.X. Benedict, E.L. Shirley, and S.G. Louie: Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. 72, 1878 (1994)

    Article  ADS  Google Scholar 

  167. L. Chico, L.X. Benedict, S.G. Louie, and M. Cohen: Quantum conductance of carbon nanotubes with defects, Phys. Rev. B 54, 2600 (1996)

    Article  ADS  Google Scholar 

  168. A. Ferretti, A. Calzolari, R. Di Felice, F. Manghi, M. J. Caldas, M. Buongiorno Nardelli, and E. Molinari: First-principle theory of correlated transport through nano-junctions, Phys. Rev. Lett. (2004), in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Di Felice, R., Calzolari, A., Varsano, D., Rubio, A. (2006). Electronic Structure Calculations for Nanomolecular Systems. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_4

Download citation

Publish with us

Policies and ethics