Skip to main content

Stem Cell Therapy for Parkinson’s Disease

  • Conference paper
Stem Cells in Reproduction and in the Brain

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 60))

Abstract

Transplantation of fetal dopaminergic (DA) neurons can produce symptomatic relief for patients with Parkinson’s disease, but the technical and ethical difficulties have limited the application of this therapy. Neural precursor cells and embryonic stem cells (ESCs) are expected to be candidates of potential donor cells for transplantation. Human neural precursor cells obtained from the midbrain give rise to TH-positive neurons. The growth of the cells, however, is slow and the differentiation rate of DA neurons is still low for clinical application. Monkey ESCs give rise to midbrain DA neurons, and the transplanted ESC-derived neurospheres function as DA neurons, attenuating the neurological symptoms of the monkey Parkinson’s disease model. These results suggest the possibility of using stem cells for the treatment of Parkinson’s disease, but problems such as the low survival rate in vivo and tumor formation must be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MAS, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 10:1200–1207

    Article  CAS  Google Scholar 

  • Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells 22:1246–1255

    Article  PubMed  Google Scholar 

  • Bergman H, Deuschl G (2002) Pathophysiology of Parkinson’ disease: from clinical neurology to basic neuroscience and back. Mov Disord 17Suppl. 3:S28–S40

    Article  PubMed  Google Scholar 

  • Betarbet R, Zigova T, Bakay RA, Luskin MB (1996) Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone. Int J Dev Neurosci 14:921–930

    Article  PubMed  CAS  Google Scholar 

  • Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734

    Article  PubMed  CAS  Google Scholar 

  • Björklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Che IYC, Mc-Naught KSTP, Brownell A-L, Jenkins BG, Wahlestedt C, Kim K-S, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80:4546–4550

    Article  PubMed  CAS  Google Scholar 

  • Buytaert-Hoefen KA, Alvarez E, Freed CR (2004) Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells 22:669–674

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MK, Cui X, Hu Z-Y, Jackson J, Sherman S, Seiger A, Wahlberg LU (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158:265–278

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    Article  PubMed  CAS  Google Scholar 

  • Dostrovsky JO, Hutchinson WD, Lozano AM (2002) The globus pallidus, deep brain stimulation, and Parkinson’s disease. Neuroscientist 8:284–290.

    PubMed  Google Scholar 

  • Erdö F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, Föcking M, Küstermann E, Kolossov E, Hescheler J, Hossmann K-A, Trapp T (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785

    Article  PubMed  Google Scholar 

  • Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719

    Article  PubMed  CAS  Google Scholar 

  • Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Björklund A (1999) Site-specific migration and neural differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci 19:5990–6005

    PubMed  CAS  Google Scholar 

  • Gall CM, Hendry SH, Seroogy KB, Jones EG, Haycock JW (1987) Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb. J Comp Neurol 266:307–318

    Article  PubMed  CAS  Google Scholar 

  • Hagell P, Brundin P (2001) Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 60:741–752

    PubMed  CAS  Google Scholar 

  • Horiguchi S, Takahashi J, Kishi Y, Morizane A, Okamoto Y, Koyanagi M, Tsuji M, Tashiro K, Honjo T, Fujii S, Hashimoto N (2004) Neural precursor cells derived from human embryonic brain retain regional specificity. J Neurosci Res 75:817–824

    Article  PubMed  CAS  Google Scholar 

  • Iakova P, Awad SS, Timchenko NA (2003) Aging reduces proliferative capacities of liver by switching pathways of C/EBPa growth arrest. Cell 113:495–506

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa S-I, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived activity. Neuron 28:31–40

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S-I, Nakatsuji N, Sasai Y (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A 99:1580–1585

    Article  PubMed  CAS  Google Scholar 

  • Kim J-H, Auerbach JM, Rodriguez-Gómez J, Velasco I, Gavin D, Lumelsky N, Lee S-H, Nguyen J, Sánchez-Pernaute R, Banliewicz K, McKay RD (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    Article  PubMed  CAS  Google Scholar 

  • Kuhn HG, Dickson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    PubMed  CAS  Google Scholar 

  • Kuo HC, Pau KY, Yeoman RR, Mitalipov SM, Okano H, Wolf DP (2003) Differentiation of monkey embryonic stem cells into neural lineages. Biol Reprod 68:1727–1735

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cell. Nat Biotech 18:675–679

    Article  CAS  Google Scholar 

  • Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Sawle G, Widner H, Rothwell JC, Bjorklund A, Brooks D, Brundin P, Frackowiak R, Marsden CD, Odin P (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 35:172–180

    Article  PubMed  CAS  Google Scholar 

  • Miyasaki JM, Martin W, Suchowersky O, Weiner WJ, Lang AE (2002) Practice parameter: initiation of treatment for Parkinson’s disease: an evidence-based review: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 58:11–17

    Article  PubMed  CAS  Google Scholar 

  • Monje L, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996) The aging of hematopoietic stem cells. Nat Med 2:1011–1016

    Article  PubMed  CAS  Google Scholar 

  • Nishimura F, Yoshikawa M, Kanda S, Nonaka M, Yokota H, Shiroi A, Nakase H, Hirabayashi H, Ouji Y, Birumachi J, Ishizaka S, Sakaki T (2003) Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells 21:171–180

    Article  PubMed  Google Scholar 

  • Ohmachi S, Watanabe Y, Mikami T, Kusu N, Ibi T, Akaike A, Itoh N (2000) FGF-20, a novel neurotrophic factor, preferentially expressed in the substantia nigra pars compacta of rat brain. Biochem Biophys ResCommun277:355–360

    Article  CAS  Google Scholar 

  • Olanow CW, Tatton WG (2000) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  Google Scholar 

  • Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414

    Article  PubMed  Google Scholar 

  • Ostenfeld T, Caldwell MA, Prowse KR, Linskens MH, Jauniaux E, Svendsen CN (2000) Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp Neurol 164:215–226

    Article  PubMed  CAS  Google Scholar 

  • Ostenfeld T, Joly E, Tai Y-T, Peters A, Caldwell M, Jauniaux E, Svendsen CN (2002) Regional specification of rodent and human neurospheres. Dev Brain Res 134:43–55

    Article  CAS  Google Scholar 

  • Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH (2001) Progenitor cells from human brain after death. Nature 411:42–43

    Article  PubMed  CAS  Google Scholar 

  • Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101:12543–12548

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Pernaute R, Studer L, Bankiewicz KS, Major EO, McKay RDG (2001) In vitro generation and transplantation of precursor-derived human dopamine neurons. J Neurosci Res 65:284–288

    Article  PubMed  Google Scholar 

  • Schierle GS, Hansson O, Leist M, Nicotera P, Widner H, Brundin P (1999) Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nat Med 5:97–100

    Article  PubMed  CAS  Google Scholar 

  • Schulz TC, Noggle SA, Palmarini GM, Weiler DA, Lyons IG, Pensa KA, Meedeniya AC, Davidson BP, Lambert NA, Condie BG (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22:1218–1238

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Paul G, Csete M, Boehm BO, Carvey PM, Kupsch A, Schwarz J (2001) Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 170:317–325

    Article  PubMed  CAS  Google Scholar 

  • Studer L, Tabar V, McKay RD (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1:290–295

    Article  PubMed  CAS  Google Scholar 

  • Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148:135–146

    Article  PubMed  CAS  Google Scholar 

  • Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated frommonkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115:102–109

    Article  PubMed  CAS  Google Scholar 

  • Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E, Frolichsthal-Schoeller P, Cova L, Arcellana-Panlilio M, Colombo A, Galli R (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of trans-plantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156:71–83

    Article  PubMed  CAS  Google Scholar 

  • Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743

    Article  PubMed  CAS  Google Scholar 

  • Widner H, Tetrud J, Rehncrona S, Snow B, Brundin P, Gustavii B, Björklund A, Lindvall O, Langston JW (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). N Engl J Med 327:1556–1563

    Article  PubMed  CAS  Google Scholar 

  • Wood HB, Episkopou V (1999) Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86:197–201

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monocultures. Nat Biotechnol 21:183–186

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940

    Article  PubMed  CAS  Google Scholar 

  • Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takahashi, J. (2006). Stem Cell Therapy for Parkinson’s Disease. In: Morser, J., Nishikawa, S.I., Schöler, H.R. (eds) Stem Cells in Reproduction and in the Brain. Ernst Schering Research Foundation Workshop, vol 60. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31437-7_15

Download citation

Publish with us

Policies and ethics