Skip to main content

Evaluating Individual Tree Growth Models

  • Chapter
Sustainable Forest Management

Abstract

Individual tree growth models have become important tools for forest management. Therefore proper model evaluation criteria are of increasing interest to achieve a consistent and reliable management output. Generally, a forest growth model consists of a set of model components or functions, estimated independently or simultaneously using a range of different techniques. While an evaluation should examine each individual model component, the overall system performance is usually considered much more important. In this chapter we discuss evaluation criteria within three growth models focusing on the general model approach, the parameterisation and estimation methods, variable selection and model simplicity, biological realism, as well as the compatibility and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beetson T, Nester M, Vanclay JK (1992) Enhancing a permanent sample plot system in natural forests. Statistician 41:525–538

    Google Scholar 

  • Böckmann T, Saborowski J, Dahm S, Nagel J, Spellmann H (1998) Die Weiterentwicklung der Betriebsinventur in Niedersachsen. Forst Holz 53(8):219–226

    Google Scholar 

  • Buckman RE (1962) Growth and yield of red pine in Minnesota. Tech Bull 1272. USDA Forest Service, Lake States Forest Experiment Station, St Paul, Minnesota

    Google Scholar 

  • Burkhart HE (2003) Suggestions for choosing an appropriate level for modeling forest stands. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. Chap 1. CAB International, Wallingford, pp 3–10

    Google Scholar 

  • Clutter JL (1963) Compatible growth and yield models for loblolly pine. For Sci 9:354–371

    Google Scholar 

  • Daniels RF, Burkhart HE (1988) An integrated system of forest stand models. For Ecol Manage 23:159–177

    Article  Google Scholar 

  • Dralle K, Rudemo M (1997) Automatic estimation of individual tree positions from aerial photos. Can J For Res 27:1728–1736

    Article  Google Scholar 

  • Encyclopædia Britannica (2003) Realism. Encyclopædia Britannica Premium Service (online version) at http://www.britannica.com/eb/article?eu=64475, accessed 24 Sept 2003

    Google Scholar 

  • GarcĂ­a O (2003) Dimensionality reduction in growth models: an example. For Biometry Modelling Inform Sci 1:1–15

    Google Scholar 

  • Gertner G (1987) Approximating precision in simulation projections: an efficient alternative to Monte Carlo methods. For Sci 33:230–239

    Google Scholar 

  • Gertner G (2003) Assessment of computationally intensive spatial statistical methods for generating inputs for spatially explicit error budgets. For Biometry Modelling Inform Sci 1:27–34

    Google Scholar 

  • Gertner G, Dzialowy PJ (1984) Effects of measurement errors on an individual tree-based growth projection system. Can J For Res 14:311–316

    Google Scholar 

  • Gertner GZ, Fang S, Skovsgaard JP (1999) A Bayesian approach for estimating the parameters of a forest process model based on long-term growth data. Ecol Modelling 119:249–265

    Article  Google Scholar 

  • Green EJ, MacFarlane DW, Valentine HT (2000) Bayesian synthesis for quantifying uncertainty in predictions from process models. Tree Physiol 20:415–419

    PubMed  Google Scholar 

  • Hall DB, Clutter M (2004) Multivariate multilevel nonlinear mixed effects models for timber yield predictions. Biometrics 60:16–24

    Article  PubMed  Google Scholar 

  • Hasenauer H, Monserud RA, Gregoire TG (1998) Using simultaneous regression techniques with individual-tree growth models. For Sci 44:87–95

    Google Scholar 

  • Huber PJ (2004) Robust statistics. Wiley, New York, 308 pp

    Google Scholar 

  • Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating growth and yield models. Modelling For Syst 24:271–293

    Google Scholar 

  • Hyink DM, Moser JW Jr (1983) A generalized framework for projecting forest yield and stand structure using diameter distributions. For Sci 29:85–95

    Google Scholar 

  • Johannsen VK (1999) A growth model for oak in Denmark. PhD Thesis. Royal Veterinary and Agricultural University, Copenhagen, XIV + 197 pp

    Google Scholar 

  • Kahne S (1976) Modelling credibility for large-scale systems. IEEE Trans Syst Man Cybernet 6(8):53–57

    Google Scholar 

  • Keuzenkamp HA, McAleer M (1995) Simplicity, scientific inference and econometric modelling. Econ J 105:1–21

    Google Scholar 

  • Lappi J (1997) A longitudinal analysis of height/diameter curves. For Sci 43:555–570

    Google Scholar 

  • Lappi J, Bailey RL (1988) A height prediction model with random stand and tree parameters: an alternative to traditional site index methods. For Sci 34:907–927

    Google Scholar 

  • Leary RA (1979) Design. In: A generalized forest growth projection system applied to the Lake States region. General Tech Rep NC-49. USDA Forest Service, North Central Forest Experiment Station, Minnesoata, pp 5–15

    Google Scholar 

  • Leary RA (1997) Testing models of unthinned red pine plantation dynamics using a modified Bakuzis matrix of stand properties. Ecol Modelling 98:35–46

    Article  Google Scholar 

  • McAllister J (1996) Beauty and revolution in science. Cornell University Press, Ithaca, XI + 231 pp

    Google Scholar 

  • Monserud RA (2003) Evaluating forest models in a sustainable forest management context. For Biometry Modelling Inform Sci 1:35–47

    Google Scholar 

  • Nelson R, Oderwald R, Gregoire TG (1997) Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass. Remote Sensing Environ 60:327–334

    Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sensing 29:564–577

    Google Scholar 

  • Pretzsch H (2001) Modellierung des Waldwachstums. Blackwell, Berlin, XIV + 341 pp

    Google Scholar 

  • Pretzsch H, ƉurskĂ˝ J (2001) Evaluierung von Waldwachstumssimulatoren auf Baum-und Bestandesebene. Allg Forst Jagdz 172:146–150

    Google Scholar 

  • Pretzsch H, Biber P, ƉurskĂ˝ J, von Gadow K, Hasenauser H, Kändler G, Kenk G, Kublin E, Nagel J, Pukkala T, Skovsgaard JP, Sodtke R, Sterba H (2002) Recommendations for standardized documentation and further development of forest growth simulators. Forstwiss Centralbl 121:138–151

    Article  Google Scholar 

  • Radtke PJ, Burk TE, Bolstad PV (2002) Bayesian melding of a forest ecosystem model with correlated inputs. For Sci 48:701–711

    Google Scholar 

  • Ratkowsky DA (1983) Nonlinear regression modelling. Dekker, New York, VIII + 276 pp

    Google Scholar 

  • Ratkowsky DA (1990) Handbook of nonlinear regression modelling. Dekker, New York, IX + 241 pp

    Google Scholar 

  • Reynolds MR, Chung J (1986) Regression methodology for estimating model prediction error. Can J For Res 16:931–938

    Google Scholar 

  • Reynolds MR, Burk TE, Huang W (1988) Goodness-of-fit tests and model selection procedures for diameter distribution models. For Sci 34:373–399

    Google Scholar 

  • Robinson AP, Monserud RA (2003) Criteria for comparing the adaptability of forest growth models. For Ecol Manage 172:53–67

    Article  Google Scholar 

  • Schadauer K (1999) Verfahren zur Ergänzung fehlender Baumhöhen bei Wiederholungsmessungen. Centralbl Ges Forstwesen 116:67–80

    Google Scholar 

  • Schmidt M (2001) Prognosemodelle fĂĽr ausgewählte Holzqualitätsmerkmale wichtiger Baumarten. Dissertation, Fakultät fĂĽr Forstwissenschaften und Waldökologie, Universität Göttingen, 309 pp

    Google Scholar 

  • Skovsgaard JP (1997a) Management of sitka spruce without thinnings. Res Ser Vol 19. Danish Forest and Landscape Research Institute, Hörsholm, 525 pp

    Google Scholar 

  • Skovsgaard JP (ed) (1997b) Design, performance and evaluation of models for forest stand dynamics. Ecol Modelling 98(1):XI, 86

    Google Scholar 

  • Skovsgaard JP, Vanclay JK (2001) Forest site productivity: do concepts agree with facts? In: LeMay V, Marshall P (eds) Proc Conf on Forest Modelling for Ecosystem Management, Forest Certification, and Sustainable Management, 12–17 Aug, Vancouver. IUFRO, British Columbia Ministry of Forests, University of British Columbia, Vancouver, p 141

    Google Scholar 

  • Soares P, TomĂ© M, Skovsgaard JP, Vanclay JK (1995) Evaluating a growth model for forest management using continuous forest inventory data. For Ecol Manage 71:251–265

    Article  Google Scholar 

  • Tarp-Johansen MJ (2002a) Automatic stem mapping in three dimensions by template matching from aerial photographs. Scand J For Res 17:359–368

    Google Scholar 

  • Tarp-Johansen MJ (2002b) Stem diameter estimation from aerial photographs. Scand J For Res 17:369–376

    Google Scholar 

  • Tarp-Johansen MJ, Skovsgaard JP, Madsen SF, Johannsen VK, Skovgaard I (1997) Compatible stem taper and stem volume functions for oak in Denmark. Ann Sci For 54:577–595

    Google Scholar 

  • Vanclay JK (1994) Modelling forest growth and yield. CAB International, Wallingford, XVII + 312 pp

    Google Scholar 

  • Vanclay JK, Skovsgaard JP (1997) Evaluating forest growth models. Ecol Modelling 98:1–12

    Article  Google Scholar 

  • Vanclay JK, Skovsgaard JP, Hansen CP (1995) Assessing the quality of permanent sample plot databases for growth and yield modelling in forest plantations. For Ecol Manage 71:177–186

    Google Scholar 

  • Verbeeck H, Samson R, Lemeur R (2003) The use of the Monte Carlo technique to assess the goodness-of-fit of the dynamic vegetation model FORUG. Comm Appl Biol Sci 68:307–310

    Google Scholar 

  • Watt MS, Kimberley MO, Richardson B, Whitehead D, Mason EG (2004) Testing a juvenile tree growth model sensitive to competition from weeds, using Pinus radiata at two contrasting sites in New Zealand. Can J For Res 34:1985–1992

    Article  Google Scholar 

  • Zucchini W, Schmidt M, von Gadow K (2001) A model for the diameter-height distribution in an uneven-aged beech forest and a method to assess the fit of such models. Silva Fenn 35(2):169–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, M., Nagel, J., Skovsgaard, J. (2006). Evaluating Individual Tree Growth Models. In: Hasenauer, H. (eds) Sustainable Forest Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31304-4_12

Download citation

Publish with us

Policies and ethics