Skip to main content

Klinische Bedeutung des Nachweises minimaler Residualerkrankung bei Leukämien, Lymphomen und soliden Tumoren

  • Chapter
Kompendium Internistische Onkologie

Zusammenfassung

In den letzten Jahren wurden wesentliche Fortschritte im Verständnis der Biologie und Pathogenese der akuten und chronischen Leukämien, Non-Hodgkin-Lymphome und soliden Tumoren erzielt. Diese Fortschritte wurden vor allem durch die Anwendung moderner Methoden der Zytogenetik und Molekularbiologie beim Studium der physiologischen und pathologischen Zellentwicklung erreicht. So konnte für viele Leukämie- und Lymphomentitäten, aber auch für solide Tumoren gezeigt werden, daß ihnen spezifische genetische und molekulare Veränderungen zugrunde liegen, denen eine Schlüsselrolle in der Entwicklung dieser Erkrankungen zukommt. Die im Rahmen dieser Untersuchungen entwickelten experimentellen Methoden und gewonnenen Einblicke in die Entwicklung maligner Zellen sind Grundlage neuartiger diagnostischer Methoden geworden, die die Detektion von Tumorzellen mit einer zuvor ungeahnten Empfindlichkeit und Spezifität erlauben. Der Einsatz dieser empfindlichen Nachweismethoden hat den Nachweis klinisch okkulter, residueller Tumorzellen (Minimal-Residual-Disease, MRD) in der Phase der kompletten klinischen und morphologischen Remission bei einem Großteil der Patienten mit malignen Erkrankungen erbracht. Diese Untersuchungen haben nicht nur neue Einblicke in das Remissionsverhalten maligner Erkrankungen ermöglicht und wesentlich zum Verständnis der Biologie der Tumoren beigetragen, sondern auch zu einer neuen Definition des Begriffes Remission geführt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Almeida J et al (1999) High-sensitive immunophenotyping and DNA ploidy studies for the investigation of minimal residual disease in multiple myeloma. Br J Haematol 107: 121–131

    Article  PubMed  CAS  Google Scholar 

  • Bader P et al (2002) Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 16:1668–1672

    Article  PubMed  CAS  Google Scholar 

  • Bartram CR (1995) Einsatz der Molekulargenetik für Diagnose und Verlaufskontrolle. In: Zeller, zur Hausen (Hrsg). Onkologie. Ecomed Verlagsgesellschaft

    Google Scholar 

  • Bataille R et al (1997) Multiple myeloma. N Engl J Med 326:1657–1664

    Article  Google Scholar 

  • Battyani Z, Grob JJ, Xerri L et al (1995) PCR detection of circulating melanocytes as a prognostic marker in patients with melanoma. Arch Dermatol 131:443–447

    Article  Google Scholar 

  • Biernaux C et al (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86:3118–3122

    PubMed  CAS  Google Scholar 

  • Billadeau D et al (1992) Detection and quantitation of malignant cells in the peripheral blood of multiple myeloma patients. Blood 80:1818–1824

    PubMed  CAS  Google Scholar 

  • Billadeau D et al (1997) Sequential analysis of bone marrow and peripheral blood after stem cell transplant for myeloma shows disparate tumor involvement. Leukemia 11:1565–1570

    Article  PubMed  CAS  Google Scholar 

  • Biondi et al (2000) Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia 14:1939–1943

    Article  PubMed  CAS  Google Scholar 

  • Bird JM et al (1993) Minimal residual disease after bone marrow transplantation for multiple myeloma: evidence for cure in long-term survivors. Bone Marrow Transplant 12:651–654

    PubMed  CAS  Google Scholar 

  • Bird JM et al (1994) Molecular detection of clonally rearranged cells in peripheral blood progenitor cell harvests from multiple myeloma patients. Br J Haematol 88:110–116

    Article  PubMed  CAS  Google Scholar 

  • Björkstrand B et al (1995) Double high dose chemotherapy with autologous stem cell transplantation can induce molecular remissions inmultiplemyeloma. Bone Marrow Transplant 15:367–371

    PubMed  Google Scholar 

  • Borowitz MJ et al (1993) Predictability of the t(1;19)(q23;p13). From surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis. A pediatric oncology group study. Blood 82:1086–1091

    PubMed  CAS  Google Scholar 

  • Braun S et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  PubMed  CAS  Google Scholar 

  • Breit TM, Wolvers-Tettero IL et al (1993) Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 82:3063–3074

    PubMed  CAS  Google Scholar 

  • Brossart P, Keilholz U, Willhauck M et al (1993) Hematogenous spread of malignant melanoma cells in different stages of disease. J Invest Dermatol 101:887–889

    Article  PubMed  CAS  Google Scholar 

  • Brossart P, Schmier J, Krüger S et al (1995) A PCR-based semiquantitative assessment of malignant melanoma cells in peripheral blood. Cancer Res 55:4065–4068

    PubMed  CAS  Google Scholar 

  • Brüggemann M et al (2000) Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 14:1419–1425

    Article  PubMed  Google Scholar 

  • Brüggemann M et al (2004) Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia (in press)

    Google Scholar 

  • Buonamici S et al (2002) Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 99:443–449

    Article  PubMed  CAS  Google Scholar 

  • Burmeister T et al (2000) Quality assurance in PT-PCR-based BCR/ABL diagnostics — results of an interlaboratory test and a standardization approach. Leukemia 14:1850–1856

    Article  PubMed  CAS  Google Scholar 

  • Campana D, Pui CH (1995) Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 85:1416–1434

    PubMed  CAS  Google Scholar 

  • Cave H et al (1998) clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer — Childhood Leukemia Cooperative Group. N Engl J Med 339:591–598

    Article  PubMed  CAS  Google Scholar 

  • Cavo M et al (2000) Molecular monitoring of minimal disease in patients in long-term complete remission after allogeneic stem cell transplantation for multiple myeloma. Blood 96: 355–357

    PubMed  CAS  Google Scholar 

  • Cheung NV et al (1997) Detection of metastatic neuroblastoma in bone marrow: When is routine marrow histology intensive? J Clin Oncol 15:2807–2817

    PubMed  CAS  Google Scholar 

  • Corradini P et al (1999) Molecular and clinical remissions in multiple myeloma: Role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol 17: 208–215

    PubMed  CAS  Google Scholar 

  • Corradini P et al (1997) Molecular monitoring of minimal residual disease in follicular and mantle cell non-Hodgkin’s lymphomas treated with high-dose chemotherapy and peripheral blood progenitor cell autografting. Blood 89:724–731

    PubMed  CAS  Google Scholar 

  • Corradini P et al (1995) High-dose sequential chemotherapy in multiple myeloma: residual tumor cells are detectable in bone marrow and peripheral blood cell harvests and after autografting. Blood 85:1596–1602

    PubMed  CAS  Google Scholar 

  • Coustan-Smith et al (2000) Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 96:2691–2696

    CAS  Google Scholar 

  • Cross N et al (1993) Competitive PCR to estimate the number of BCR-ABL transcripts in CML patients after bone marrow transplantation. Blood 82:1929–1936

    PubMed  CAS  Google Scholar 

  • Czuczman MS et al (2001) Clearing of cells bearing the bcl-2 [t(14;18)] translocation from blood and marrow of patients treated with rituximab alone or in combination with CHOP chemotherapy. Ann Oncol 12:109–114

    Article  PubMed  CAS  Google Scholar 

  • Davies FE et al (2001) The impact of attaining a minimal disease after high-dose melphalan and autologous transplantation for multiple myeloma. Br J Haematol 112: 814–819

    Article  PubMed  CAS  Google Scholar 

  • Deguchi T, Doi T, Ehara H et al (1993) Detection of micrometastatic prostate cancer cells in lymph nodes by reverse transcriptase polymerase chain reaction. Cancer Res 53:5350–5354

    PubMed  CAS  Google Scholar 

  • Delattre O, Zucman J, Melot T et al (1994) The Ewing family of tumors — a subgroup of small round cell tumors defined by specific chimeric transcripts. N Engl J Med 331:294–299

    Article  PubMed  CAS  Google Scholar 

  • Diverio D et al (1994) Monitoring of treatment outcome in acute promyelocytic leukemia by RT-PCR. Leukemia 8:1105–1107

    PubMed  CAS  Google Scholar 

  • Dölken G, Dölken L (1997) Quantitative determination of t(14;18)-positive cells by real-time quantitative PCR using a double labelled fluorogenic probe. Blood 90(Suppl 1). ASH Meeting, San Diego, USA

    Google Scholar 

  • Dölken G, Illerhaus, G, Hirt C, Mertelsmann R (1996) Bcl-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant disease. J Clin Oncol 14:1333–1344

    PubMed  Google Scholar 

  • Dölken L, Schüler F, Dölken G (1998) Quantitative detection of t(14;18)-positive cells by real-time quantitative PCR using fluoro-genetic probes. Bio Techniques 25:1058–1064

    Google Scholar 

  • Dreger P et al (1998) Early stem cell transplantation for chronic lymphocytic leukemia: A chance for cure? Br J Cancer 77:2291–2297

    PubMed  CAS  Google Scholar 

  • Dreyfus F et al (1995) Detection of malignant B cells in peripheral blood stem cell collections after chemotherapy in patients with multiple myeloma. Bone Marrow Transplant 15:707–711

    PubMed  CAS  Google Scholar 

  • Eckert C et al (2001) Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 358:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Eick S, Krieger G, Bolz I, Kneba M (1990) Sequence analysis of amplified t(14;18) chromosomal breakpoints in B-cell lymphomas. J Pathol 162:127–133

    Article  PubMed  CAS  Google Scholar 

  • Evans P et al (1997) Detection and quantitation of CBFb/MYH11 transcripts associated with the inv(16) in presentation and follow-up samples from patients with AML. Leukemia 11:364–369

    Article  PubMed  CAS  Google Scholar 

  • Finke J, Slanina J, Lange W, Dölken G (1993) Persistence of circulating t(14;18)-positive cells in long-term remission after radiation therapy for localized-stage follicular lymphoma. J Clin Oncol 11:1668–1673

    PubMed  CAS  Google Scholar 

  • Foss AJ, Guille MJ, Occleston NL et al (1995) The detection of melanoma cells in peripheral blood by reverse transcription-polymerase chain reaction. Br J Cancer 72:155–159

    PubMed  CAS  Google Scholar 

  • Freedman AS et al (1996) High-dose therapy and autologous bone marrow transplantation in patients with follicular lymphoma during first remission. Blood 88:2780–2786

    PubMed  CAS  Google Scholar 

  • Freedman AS et al (1998) High-dose chemoradiotherapy and anti-b-cell monoclonal antibody-purged autologous bone marrow transplantation in mantle-cell lymphoma: no evidence for long-term remission. J Clin Oncol 16:13–18

    PubMed  CAS  Google Scholar 

  • Gökbuget N et al (2003) Risk-adapted treatment according to minimal residual disease in adult ALL. Best Pract Res Clin Haematol 15:639–652

    Article  Google Scholar 

  • Goulden N et al (1994) PCR assessment of bone marrow status in ‘isolated’ extramedullary relapse of childhood B-precursor acute lymphoblastic leukaemia. Br J Haematol 87:282–285

    Article  PubMed  CAS  Google Scholar 

  • Gribben J (2002) Autologous hematopoietic transplantation for low-grade lymphomas. Cytotherapy 4:205–215

    Article  PubMed  CAS  Google Scholar 

  • Gribben JG, Nadler LM (1994) Detection of minimal residual disease in patients with lymphomas using the polymerase chain reaction. Important Advances in Oncology: 117–129

    Google Scholar 

  • Gribben JG et al (1994) Detection of residual lymphoma cells by PCR in peripheral blood is significantly less predictive for relapse than detection in bone marrow. Blood 83:3800–3807

    PubMed  CAS  Google Scholar 

  • Guerrasio A et al (2002) Assessment of minimal residual disease (MRD) in CBFβ/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 16:1176–1181

    Article  PubMed  CAS  Google Scholar 

  • Harris NL et al (1994) A revised European American classification of lymphoid neoplasms: a proposal from the international lymphoma study group. Blood 84:1361–1392

    PubMed  CAS  Google Scholar 

  • Hebert J et al (1994) Detection of minimal residual disease in acute myelomonocytic leukemia with abnormal marrow eosinophils by nested polymerase chain reaction with allele-specific amplification. Blood 84:2291–2296

    PubMed  CAS  Google Scholar 

  • Heiss MM et al (1995) Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: A reference to early systemic disease in solid cancer. Nat Med 1:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Hochhaus A et al (1996) Quantification of residual disease in chronic myelogenous leukemia patients on interferon-α therapy by competitive polymerase chain reaction. Blood 87:1549–1555

    PubMed  CAS  Google Scholar 

  • Hoon DSB, Wang Y, Dale PS et al (1995) Detection of occult melanoma cells in blood with a multiple-marker polymerase chain reaction assay. J Clin Oncol 13:2109–2116

    PubMed  CAS  Google Scholar 

  • Huang W et al (1993) Acute promyelocytic leukemia: Clinical relevance of two major PML-RARa isoforms and detection of minimal residual disease in retrotranscriptase/polymerase chain reaction to predict relapse. Blood 82:1264–1269

    PubMed  CAS  Google Scholar 

  • Hughes TP et al (1991) Detection of residual leukemia after bone marrow transplantation for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood 77:874–878

    PubMed  CAS  Google Scholar 

  • Israeli RS, Miller WH, Su SL et al (1994) Sensitive nested reverse transcription polymerase chain reaction detection of circulating prostatic tumor cells: comparison of prostate-specific membrane antigen and prostate-specific antigen-based assays. Cancer Res 54:6306–6310

    PubMed  CAS  Google Scholar 

  • Izbicki JR et al (1997) Prognostic value of immunohistochemically identifiable tumor cells in lymph nodes of patients with completely resected esophageal cancer. N Engl J Med 337:1188–1194

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola S, Vornanen T, Leinonen J (1995) Detection of prostatic cells in peripheral blood: correlation with serum concentrations of prostate-specific antigen. Clin Chem 41:182–186

    PubMed  CAS  Google Scholar 

  • Jaeger U, Kainz B (2003) Monitoring minimal residual disease in AML: the right time of real time. Ann Hematol 82(3):139–147

    PubMed  CAS  Google Scholar 

  • Johnson PWM (1994) Detection of cells bearing the t(14;18) translocation following myeloablative treatment and autologous bone marrow transplantation for follicular lymphoma. J Clin Oncol 12:798–805

    PubMed  CAS  Google Scholar 

  • Kane JR et al (1996) Molecular analysis of the PML/RARa chimeric gene in pediatric acute promyelocytic leukemia. Leukemia 10:1296–1302

    PubMed  CAS  Google Scholar 

  • Kantarjian HM et al (1993) Chronic myelogenous leukemia: A concise update. Blood 82:691–703

    PubMed  CAS  Google Scholar 

  • Katz AE, Olsson CAA, Raffo AJ (1994) Molecular staying of prostate cancer with the use of an enhanced reverse transcriptase-PCR assay. Urology 43:765–775

    Article  PubMed  CAS  Google Scholar 

  • Keilholz U, Willhauck M, Rimoldi D et al (1998) Reliability of RT-PCR-based assays for detection of circulating tumor cells: a quality-assurance initiative of the EORTC Melanoma Cooperative Group. Eur J Cancer 34:750–753

    Article  PubMed  CAS  Google Scholar 

  • Keilholz U et al (1998) Reliability of reverse transcription-polymerase chain reaction (RT-PCR)-based assays for the detection of circulating tumour cells: a quality-assurance initiative of the EORTC Melanoma Cooperative Group. Eur J Cancer 34:750–753

    Article  PubMed  CAS  Google Scholar 

  • Kelly KM, Womer RB, Barr FG (1996) Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase polymerase chain reaction. Cancer 78:1320–1327

    Article  PubMed  CAS  Google Scholar 

  • Klein CA et al (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360:683–689

    Article  PubMed  CAS  Google Scholar 

  • Kneba M et al (1991) Frequency and structure of t(14;18) major breakpoint regions in non Hodgkin lymphomas typed according to the Kiel classification: analysis by direct DNA sequencing. Cancer Res 51:3243–3250

    PubMed  CAS  Google Scholar 

  • Kneba M (1994) Characterization of clone-specific rearranged T-cell receptor gamma-chain genes in lymphomas and leukemias by the polymerase chain reaction and DNA sequencing. Blood 84:574–581

    PubMed  CAS  Google Scholar 

  • Kneba M, Bolz I, Linke B, Hiddemann W (1995a) Analysis of rearranged T-cell receptor chain genes by polymerase chain reaction (PCR) DNA sequencing and automated high resolution PCR fragment analysis. Blood 86:3930–3937

    PubMed  CAS  Google Scholar 

  • Kolb HJ et al (1990) Donor leukocyte transfusion for treatment of recurrent chronic myelogenous leukemia in marrow transplant recipients. Blood 76: 2462–2465

    PubMed  CAS  Google Scholar 

  • Krauter J et al (1999) Real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21)-positive AML patients. Br J Haematol 107:80–85

    Article  PubMed  CAS  Google Scholar 

  • Krauter J et al (2001a) Detection and quantification of CBFβ/MYH11 fusion transcripts in patients with inv(16)-positive acute myeloblastic leukemia by real-time RT-PCR. Genes Chromosomes Cancer 30:342–348

    Article  PubMed  CAS  Google Scholar 

  • Krauter J et al (2001b) The AML1/MTG8 fusion transcript in t(8;21) positive AML and its implication for the detection of minimal residual disease; malignancy. Hematology 5:369–381

    PubMed  CAS  Google Scholar 

  • Krauter J, Heil G, Ganser A (2001b) The AML1/MTG8 fusion transcript in t(8;21) positive AML and its implication for the detection of minimal residual disease; malignancy. Hematology. (ASH Education Program Book) 5:369–381

    CAS  Google Scholar 

  • Kunter U, Buer J, Probst M et al (1996) Peripheral blood tyrosinase messenger RNA detection and survival in malignant melanoma. J Natl Cancer Inst 88:590–594

    Article  PubMed  CAS  Google Scholar 

  • Kusec R et al (1994) AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia 8:735–739

    PubMed  CAS  Google Scholar 

  • Ladetto M et al (2003) PCR-detectable nonneoplastic Bcl-2/IgH rearrangements are common in normal subjects and cancer patients at diagnosis but rare in subjects treated with chemotherapy. J Clin Oncol 21:1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Leonard B et al (1998) Lymphoma cell burden in progenitor cell grafts measured by competitive polymerase chain reaction: Less than one log difference between bone marrow and peripheral blood sources. Blood 91:331–339

    PubMed  CAS  Google Scholar 

  • Lin F et al (1994) A comparison of the sensitivity of blood and bone marrow for the detection of minimal residual disease in chronic myeloid leukemia. Br J Haematol 86:683–685

    Article  PubMed  CAS  Google Scholar 

  • Linke B et al (1995a) Identification and structural analysis of rearranged immunoglobulin heavy chain genes in lymphomas and leukemias. Leukemia 9:840–847

    PubMed  CAS  Google Scholar 

  • Linke B, Bolz I, Pott Ch, Hiddemann W, Kneba M (1995b) Use of UItma DNA polymerase improves the PCR-detection of rearranged immunoglobulin heavy-chain CDR3 junctions. Leukemia 9:2133–2137

    PubMed  CAS  Google Scholar 

  • Linke B et al (1997) Automated high resolution PCR fragment analysis for identification of clonally rearranged immunoglobulin heavy chain genes. Leukemia 11:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Lion T et al (1991) Non-radioactive detection of the rearranged BCR/ABL sequences amplified by polymerase chain reaction. Leukemia 5:156–159

    PubMed  CAS  Google Scholar 

  • Lion T et al (1992) Monitoring of residual disease in chronic myelogenous leukemia by quantitative polymerase chain reaction. Leukemia 6:495–499

    PubMed  CAS  Google Scholar 

  • Lion T et al (1993) Early detection of relapse after bone marrow transplantation of patients with chronic myelogenous leukaemia. Lancet 341:275–276

    Article  PubMed  CAS  Google Scholar 

  • Lion T (1994) Clinical implications of qualitative and quantitative polymerase chain reaction analysis in the monitoring of patients with chronic myelogenous leukemia. Bone Marrow Transplant 14:505–509

    PubMed  CAS  Google Scholar 

  • Lion T et al (1995) Use of quantitative polymerase chain reaction to monitor residual disease in chronic myelogenous leukemia during treatment with interferon. Leukemia 9:1353–1360

    PubMed  CAS  Google Scholar 

  • Lion T (1996) Monitoring of residual disease in chronic myelogenous leukemia: methodological approaches and clinical aspects. Leukemia 10:896–906

    PubMed  CAS  Google Scholar 

  • Lion T (2003) Summary: Reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia 17:252–254

    Article  PubMed  CAS  Google Scholar 

  • Liu PP et al (1995) Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood 85:2289–2302

    PubMed  CAS  Google Scholar 

  • Lo Coco F et al (1999) Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood 94:12–22

    PubMed  Google Scholar 

  • López-Guillermo A et al (1998) The clinical significance of molecular response in indolent follicular lymphomas. Blood 91:2955–2960

    PubMed  Google Scholar 

  • López-Guillermo A et al (2000) Molecular response assessed by PCR is the most important factor predicting failure-free survival in indolent follicular lymphoma: Update of the MDACC series. Ann Oncol 11(Suppl. 1):S137–S140

    Article  Google Scholar 

  • Magni M et al (2000) Successful in vivo purging of CD34-containing peripheral blood harvests in mantle cell and indolent lymphoma: evidence for a role of both chemotherapy and rituximab infusion. Blood 96:864–869

    PubMed  CAS  Google Scholar 

  • Marcucci G et al (2001) Quantification of CBFβ/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia 15:1072–1080

    Article  PubMed  CAS  Google Scholar 

  • Martinelli G et al (2000) Molecular remission after allogeneic or autologous transplantation of hematopoietic stem cells for multiple myeloma. J Clin Oncol 18: 2273–2281

    PubMed  CAS  Google Scholar 

  • Marshall GM, Kwan E, Haber M et al (1995) Characterization of clonal immunoglobulin heavy chain and T cell receptor gene rearrangements during progression of childhood acute lymphoblastic leukemia. Leukemia 9:1847–1850

    PubMed  CAS  Google Scholar 

  • Maurer J et al (1991) Detection of chimeric BCR-ABL genes in acuty lymphoblastic leukemia by the polymerase chain reaction. Lancet 337:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Mellado B, Colomer D, Castel T et al (1996) Detection of circulating neoplastic cells by reverse-transcriptase polymerase chain reaction in malignant melanoma association with stage and prognosis. J Clin Oncol 14:2091

    PubMed  CAS  Google Scholar 

  • Merx K et al (2002) Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon α. Leukemia 16:1579–1583

    Article  PubMed  CAS  Google Scholar 

  • Miyajima Y et al (1996) Sequential detection of tumor cells in the peripheral blood and bone marrow of patients with stage IV neuroblastoma by the reverse transcription-polymerase chain reaction for tyrosine hydroxylase mRNA. Cancer 77:1214–1219

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T et al (1996) Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) AML. Blood 87:4789–4796

    PubMed  CAS  Google Scholar 

  • Miyamura K et al (1994) Minimal residual disease after bone marrow transplantation for chronic myeloid leukemia and implications for graft-versus-leukemia effect: a review of recent results. Bone Marrow Transplant 14:201–209

    PubMed  CAS  Google Scholar 

  • Moreno JG, Croce CM, Fischer R et al (1992) Detection of hematogenous micrometastasis in patients with prostate cancer. Cancer Res 52:6110–6112

    PubMed  CAS  Google Scholar 

  • Moreno JG, Shenot PJ, Shupp-Byrne D et al (1996) Analysis of tumor spillage during radical prostatectomy using RT-PCR of prostate-specific antigen. Tech Urol 2:54–57

    PubMed  CAS  Google Scholar 

  • Mortuza FY et al (2002) Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol 20:1094–1104

    Article  PubMed  Google Scholar 

  • Moss TJ et al (1991) Prognostic value of immunocytologic detection of bone marrow metastases in neuroblastoma. N Engl J Med 324:219–226

    Article  PubMed  CAS  Google Scholar 

  • Moss TJ et al (1994) Clonogenicity of circulating neuroblastoma cells: implications regarding peripheral blood stem cell transplantation. Blood 83:3085–3089

    PubMed  CAS  Google Scholar 

  • Muoz L et al (2003) Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia 17:76–82

    Article  Google Scholar 

  • Neale GAM et al (1994) Molecular evidence for minimal residual bone marrow disease in children with ‘isolated’ extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia 8:768–775

    PubMed  CAS  Google Scholar 

  • Nowak R et al (1999) Flow cytometric DNA quantification in immunophenotyped cells as a sensitive method for determination of aneuploid multiple myeloma cells in peripheral blood stem cell harvests and bone marrow after therapy. Bone Marrow Transplant 23:895–900

    Article  PubMed  CAS  Google Scholar 

  • Nowell PC, Hungerford DA (1960) A minute chromosome in human CML. Science 132:1497–1499

    Google Scholar 

  • Nucifora G et al (1993) Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 82:712–715

    PubMed  CAS  Google Scholar 

  • Nyvold C et al (2002) Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood 99:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Offit K et al (1994) Rearrangement of the bcl-6 gene as a prognostic marker in diffuse large cell lymphoma. N Engl J Med 331:74–80

    Article  PubMed  CAS  Google Scholar 

  • Ott M et al (1994) The anaplastic variant of centrocytic lymphoma is marked by frequent rearrangements of the bcl-1 gene and high proliferation indices. Histopathology 24:329–334

    Article  PubMed  CAS  Google Scholar 

  • Ott MM et al (1996) Bcl-1 rearrangement and cyclin D1 protein expression in mantle cell lymphoma. J Pathol 179:238–242

    Article  PubMed  CAS  Google Scholar 

  • Panagopoulos I, Aman P, Mertens F (1996) Genomic PCR detects tumor cells in peripheral blood frompatients withmyxoid liposarcoma. Genes Chromosomes Cancer 17:102–107

    Article  PubMed  CAS  Google Scholar 

  • Pantel K et al (1996) Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet 347:649–653

    Article  PubMed  CAS  Google Scholar 

  • Pantel K et al (2001) Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells. Semin Cancer Biol 11:327–338

    Article  PubMed  CAS  Google Scholar 

  • Paschka P et al (2003) Molecular monitoring of response to imatinib (Glivec®) in CML patients pretreated with interferon-α. Low levels of residual disease are associated with continuous remission. Leukemia 17:1687–1694

    Article  PubMed  CAS  Google Scholar 

  • Passlick B et al (1994) Immunhistochemical assessment of individual tumor cells in lymph nodes of patients with non-small cell lung cancer. J Clin Oncol 12:1827–1832

    PubMed  CAS  Google Scholar 

  • Perez-Simeon JA et al (2002) Nonmyeloablative transplantation with or without alemtuzumab: comparison between 2 prospective studies in patients with lymphoproliferative disorders. Blood 100:3121–3127

    Article  CAS  Google Scholar 

  • Peter M, Magdelenat H, Michon J et al (1995) Sensitive detection of occult Ewing’s cells by the reverse transcriptase-polymerase chain reaction. Br J Cancer 72:96–100

    PubMed  CAS  Google Scholar 

  • Pfeiderer C, Zoubek A, Gruber B et al (1995) Detection of tumour cells in peripheral blood and bone marrow from Ewing tumour patients by RT-PCR. Int J Cancer 64:135–139

    Article  Google Scholar 

  • Pignon JM et al (1990) Frequent detection of residual disease by use of the polymerase chain reaction in long-term survivors after bone marrow transplantation for chronic myeloid leukemia. Leukemia 4:83–86

    PubMed  CAS  Google Scholar 

  • Pittmann K, Burchill SA, Smith B et al (1996) Reverse-transcriptase polymerase chain reaction for expression of tyrosinase to identify malignant melanoma cells in peripheral blood. Ann Oncol 7:297–301

    Google Scholar 

  • Pott C et al (1998) Structure of Bcl-1 and IgH-CDR3 rearrangements as clonal markers in mantle cell lymphomas. Leukemia 12:1630–1637

    Article  PubMed  CAS  Google Scholar 

  • Pott C et al (2002) Molecular remission predicts progression-free survival in mantle cell lymphoma after peripheral blood stem cell transplantation. 8th International Conference on Malignant Lymphoma, Lugano, Switzerland, 12.–15.6.2002. Ann Oncol 13(Suppl. 2):69

    Google Scholar 

  • Price CGA et al (1991) The significance of circulating cells carrying t(14;18) in long remission from follicular lymphoma. J Clin Oncol 9:1527–1532

    PubMed  CAS  Google Scholar 

  • Radich JP et al (1995) Polymerase chain reaction detection of BCR-ABL fusion transcript after allogeneic marrow transplantation for CML: results and implications in 346 patients. Blood 85:2632–2638

    PubMed  CAS  Google Scholar 

  • Radich J et al (1997) Detection of bcr-abl transcripts in Philadelphia chromosomepositive acute lymphoblastic leukemia after marrow transplantation. Blood 89:2602–2609

    PubMed  CAS  Google Scholar 

  • Rambaldi A et al (2002) Monitoring of minimal residual disease after CHOP and rituximab in previously untreated patients with follicular lymphoma. Blood 99:856–862

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T et al (2000) Quantitation of minimal residual disease in multiple myeloma using an allele-specific real-time PCR assay. Exp Hematol 28: 1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Rimokh R et al (1994) Detection of the chromosomal translocation t(11;14) by polymerase chain reaction in mantle cell lymphoma. Blood 83:1871–1875

    PubMed  CAS  Google Scholar 

  • Reinhold U, Lüdtke-Handjery HC, Schnautz S et al (1997) The analysis of tyrosinasespecific mRNA in blood samples of melanoma patients by RT-PCR is not a useful test for metastatic tumor progression. J Invest Dermatol 108:166–169

    Article  PubMed  CAS  Google Scholar 

  • Ross AA et al (1993) Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 82:2605–2610

    PubMed  CAS  Google Scholar 

  • Ross AA (1998) Minimal residual disease in solid tumors malignancies: A review. J Hematother 7:9–18

    PubMed  CAS  Google Scholar 

  • Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  PubMed  CAS  Google Scholar 

  • San Miguel JF et al (1997) Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 90:2465–2470

    Google Scholar 

  • San Miguel JF et al (2002) Immunphenotypic evaluation of the plasma cell compartment inmultiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 99: 1853–1856

    Article  Google Scholar 

  • Sarris AH et al (2002) Quantitative real-time polymerase chain reaction for monitoring minimal residual disease in patients with advanced indolent lymphomas treated with rituximab, fludarabine, mitoxantrone, and dexamethasone. Semin Oncol 29(Suppl. 2):48–55

    Article  PubMed  CAS  Google Scholar 

  • Scheuring UJ et al (2003) Early minimal residual disease (MRD) analysis during treatment of Philadelphia chromosome/Bcr-Abl-positive acute lymphoblastic leukemia with the Abl-tyrosine kinase inhibitor imatinib (STI 571). Blood 101:85–90

    Article  PubMed  CAS  Google Scholar 

  • Schnittger S et al (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100:59–66

    Article  PubMed  CAS  Google Scholar 

  • Schoch C et al (2002) Comparison of chromosome banding analysis, interphase-and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 16:53–59

    Article  PubMed  CAS  Google Scholar 

  • Seale JR et al (1996) Quantification of PML/RARa transcripts in APL: explanation for the lack of sensitivity of RT-PCR for the detection of minimal residual disease and induction of the leukemia-specific mRNA by alpha interferon. Br J Haematol 95:95–101

    Article  PubMed  CAS  Google Scholar 

  • Seiden MV, Kantoff PW, Krihivas K et al (1994) Detection of circulating tumor cells in men with localized prostate cancer. J Clin Oncol 12:2634–2639

    PubMed  CAS  Google Scholar 

  • Sievers EL et al (1996) Prediction of relapse of pediatric AML by use of multidimensional flow cytometry. J Natl Cancer Inst 88:1483–1488

    Article  PubMed  CAS  Google Scholar 

  • Shimoni A et al (2002) Chimerism testing and detection of minimal residual disease after allogeneic hematopoietic transplantation using the bioView (Duct) combined morphological and cytogenetical analysis. Leukemia 16:1413–1418

    Article  PubMed  CAS  Google Scholar 

  • Smith B, Selby P, Southgate J et al (1991) Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet 338:1227–1229

    Article  PubMed  CAS  Google Scholar 

  • Soeth E et al (1997) Comparative analysis of bone marrow and venous blood isolates fromgastrointestinal cancer patients for the detection of disseminated tumor cells using reverse transcription PCR. Cancer Res 57:3106–3110

    PubMed  CAS  Google Scholar 

  • Solakoglu O et al (2002) Heterogeneous proliferative potential of occult metastasic cells in bone marrow of patients with solid epithelial tumors. Proc Natl Acad Sci USA 99:2246–2251

    Article  PubMed  CAS  Google Scholar 

  • Stam K et al (1985) Evidence of a new chimeric bcr/abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N Engl J Med 313:1429–1433

    Article  PubMed  CAS  Google Scholar 

  • Stockschlager et al (1995) Bone marrow transplantation for Philadelphia-chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant 1995, 16:663–667

    Google Scholar 

  • Su SL, Heston WD, Perrotti M et al (1997) Evaluating neoadjuvant therapy effectiveness on systemic disease use of a prostatic-specific membrane reverse transcriptase polymerase chain reaction. Urology 49:3A Suppl:95–101

    Article  PubMed  CAS  Google Scholar 

  • Summers KE et al (2002) The relative role of peripheral blood and bone marrow for monitoring molecular evidence of disease in follicular lymphoma by quantitative real-time polymerase chain reaction. Br J Haematol 118:563–566

    Article  PubMed  CAS  Google Scholar 

  • Szczepański T et al (2001) Minimal residual disease in leukaemia patients. Lancet Oncol 2:409–417

    Article  PubMed  Google Scholar 

  • Thiede C et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  PubMed  CAS  Google Scholar 

  • Tobal K et al (1996) Monitoring of minimal residual disease by quantitative RT-PCR for AML1-MTG8 transcripts in AML-M2 with t(8;21). Blood 88:3704–3709

    PubMed  CAS  Google Scholar 

  • Tobal K et al (1995) Persistence of the RARa-PML fusion mRNA detected by RT-PCR in patients in long-term remission of APL. Br J Haematol 90:915–918

    Article  Google Scholar 

  • Tricot G et al (1996) Hematopoietic stem cells transplants for multiple myeloma. Leuk Lymphoma 22:25–36

    Article  PubMed  CAS  Google Scholar 

  • Uzunel M et al (2001) The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia. Blood 98:1982–1984

    Article  PubMed  CAS  Google Scholar 

  • Vandenberghe E et al (2003) Outcome of autologous transplantation for mantle cell lymphoma: a study by the European Blood and Marrow Transplant and Autologous Blood and Marrow Transplant Registries. Br J Haematol 120:793–800

    Article  PubMed  Google Scholar 

  • van der Reijden BA et al (2002) Minimal residual disease quantification in patients with acute myeloid leukaemia and inv(16)/CBFB-MYH11 gene fusion. Br J Haematol 118:411–418

    Article  PubMed  Google Scholar 

  • van der Velden VHJ et al (2002) Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 16:1432–1436

    Article  PubMed  Google Scholar 

  • van Dongen JJM et al (1998) Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352:1731–1738

    Article  PubMed  Google Scholar 

  • van Neuhoff N (1998) Comparison of different strategies of molecular genetic monitoring following autologous stem cell transplantation in patients with follicular lymphoma. Bone Marrow Transplant 22:161–166

    Article  Google Scholar 

  • van Riet I et al (1989) Detection of monoclonal B lymphocytes in bone marrow and peripheral blood of multiple myeloma patients by immunoglobulin gene rearrangement studies. Br J Haematol 73:289–295

    Article  PubMed  Google Scholar 

  • van Rhee F et al (1995) Quantification of residual disease in Philadelphia-positive acute lymphoblastic leukemia: comparison of blood and bone marrow. Leukemia 9:329–335

    PubMed  Google Scholar 

  • Weisenburger DD et al (1996) Occurrence of the t(2;5) (p23;q35) in Non-Hodgkin’s lymphoma. Blood 87:3860–3868

    PubMed  CAS  Google Scholar 

  • West DC, Grier HE, Swallow MM et al (1997) Detection of circulating tumor cells in patients with Ewing’s sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol 15:583–588

    PubMed  CAS  Google Scholar 

  • Westbrook CA (1992) The role of molecular techniques in the clinical management of leukemia. Cancer 70:1695–1700

    Article  PubMed  CAS  Google Scholar 

  • Zetterquist H et al. (2000) Mixed chimerism in the B cell lineage is a rapid and sensitive indicator of minimal residual disease in bone marrow transplant recipients with pre-B cell acute lymphoblastic leukemia. Bone Marrow Transplant 25:843–851

    Article  PubMed  CAS  Google Scholar 

  • Zippelius A et al (1997) Limitations of reverse transcriptase polymerase chain reaction analysis for detection of micrometastatic epithelial cancer cells in bone marrow. J Clin Oncol 15:2701–2708

    PubMed  CAS  Google Scholar 

  • Zoubek A et al (1996) Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 14:1245–1251

    PubMed  CAS  Google Scholar 

  • Zoubek A et al (1998) Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer 79:56–60

    Article  PubMed  CAS  Google Scholar 

  • Zoubek A, Pfeiderer C, Ambros PF et al (1995) Minimal metastatic and minimal residual disease in patients with Ewing tumors. Klin Paediatr 207:242–247

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Kneba, M. et al. (2006). Klinische Bedeutung des Nachweises minimaler Residualerkrankung bei Leukämien, Lymphomen und soliden Tumoren. In: Schmoll, HJ., Höffken, K., Possinger, K. (eds) Kompendium Internistische Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31303-6_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-31303-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20657-6

  • Online ISBN: 978-3-540-31303-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics