Skip to main content

The Kinetic Sub-model of SSF Bioreactor Models: General Considerations

  • Chapter
  • 3203 Accesses

14.5 Conclusions

So far we have addressed the graphical and mathematical issues associated with constructing and analyzing the kinetic profile. The next chapter gives advice about the experimental techniques that may need to be used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Viccini G, Mitchell DA, Boit SD, Gern JC, da Rosa AS, Costa RM, Dalsenter FDH, von Meien OF, Krieger N (2001) Analysis of growth kinetic profiles in solid-state fermentation. Food Technol Biotechnol 39:271–294

    CAS  Google Scholar 

  • Kalil SJ, Maugeri F, Rodrigues MI (2000) Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem 35:539–550

    Article  CAS  Google Scholar 

  • Lekha PK, Chand N, Lonsane BK (1994) Computerized study of interactions among factors and their optimization through response surface methodology for the production of tannin acyl hydrolase by Aspergillus niger PKL 104 under solid state fermentation. Bioprocess Eng 31:7–15

    Article  Google Scholar 

  • Desgranges C, Vergoignan C, Georges M, Durand A (1991) Biomass estimation in solid state fermentation I. Manual biochemical methods. Appl Microbiol Biotechnol 35:200–205

    CAS  Google Scholar 

  • Desgranges C, Georges M, Vergoignan C, Durand A (1991) Biomass estimation in solid state fermentation II. On-line measurements. Appl Microbiol Biotechnol 35:206–209

    CAS  Google Scholar 

  • Matcham SE, Wood DA, Jordan BR (1984) The measurement of fungal growth in solid substrates. Appl Biochem Biotechnol 9:387–388

    Google Scholar 

  • Mitchell DA (1992) Biomass determination in solid-state cultivation In: Doelle HW, Mitchell DA, Rolz CE (eds) Solid Substrate Cultivation. Elsevier Applied Science, London, pp 53–63

    Google Scholar 

  • Acuna G, Giral R, Thibault J (1998) A neural network estimator for total biomass of filamentous fungi growing on two dimensional solid substrate. Biotechnol Techniques 12:515–519

    Article  CAS  Google Scholar 

  • Cordova-Lopez J, Gutierrez-Rojas M, Huerta S, Saucedo-Castaneda G, Favela-Torres E (1996) Biomass estimation of Aspergillus niger growing on real and model supports in solid state fermentation. Biotechnol Techniques 10:1–6

    Article  CAS  Google Scholar 

  • Davey CL, Penaloza W, Kell DB, Hedger JN (1991) Real-time monitoring of the accretion of Rhizopus oligosporus biomass during the solid-substrate tempe fermentation. World J Microbiol Biotechnol 7:248–259

    Article  Google Scholar 

  • Dubey AK, Suresh C, Umesh Kumar S, Karanth NG (1998) An enzyme-linked immunosorbent assay for the estimation of fungal biomass during solid-state fermentation. Appl Microbiol Biotechnol 50:299–302

    Article  CAS  Google Scholar 

  • Ebner A, Solar I, Acuna G, Perez-Correa R, Agosin E (1997) Fungal biomass estimation in batch solid substrate cultivation using asymptotic observation. In: Wise DL (ed), Global Environmental Biotechnology, Kluwer Academic Publishers, Dordrecht, pp 211–219

    Google Scholar 

  • Matcham SE, Jordan BR, Wood DA (1985) Estimation of fungal biomass in a solid substrate by three independent methods. Appl Microbiol Biotechnol 21:108–112

    Article  CAS  Google Scholar 

  • Ooijkaas LP, Tramper J, Buitelaar RM (1998) Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzyme Microbial Technol 22:480–486

    Article  CAS  Google Scholar 

  • Penaloza W, Davey CL, Hedger JN, Kell DB (1992) Physiological studies on the solid-state quinoa tempe fermentation, using on-line measurements of fungal biomass production. J Sci Food Agr 59:227–235

    CAS  Google Scholar 

  • Ramana Murthy MV, Thakur MS, Karanth NG (1993) Monitoring of biomass in solid state fermentation using light reflectance. Biosensor Bioelectronics 8:59–63

    Article  Google Scholar 

  • Roche N, Venague A, Desgranges C, Durand A (1993) Use of chitin measurement to estimate fungal biomass in solid state fermentation. Biotechnol Adv 11:677–683

    Article  CAS  Google Scholar 

  • Rodriguez Leon JA, Sastre L, Echevarria J, Delgado G, Bechstedt W (1988) A mathematical approach for the estimation of biomass production rate in solid state fermentation. Acta Biotechnol 8:307–310

    Article  Google Scholar 

  • Terebiznik MR, Pilosof AMR (1999) Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol Techniques 13:215–219

    Article  CAS  Google Scholar 

  • Weber FJ, Tramper J, Rinzema A (1999) Quantitative recovery of fungal biomass grown on solid kappa-carrageenan media. Biotechnol Techniques 13:55–58

    Article  CAS  Google Scholar 

  • Wiegant WM (1991) A simple method to estimate the biomass of thermophilic fungi in composts. Biotechnol Techniques 5:421–426

    Article  CAS  Google Scholar 

  • Wissler MD, Tengerdy RP, Murphy VG (1983) Biomass measurement in solid-state fermentations using 15N mass spectrometry. Dev Ind Microbiol 24:527–538

    CAS  Google Scholar 

  • Wood DA (1979) A method for estimating biomass of Agaricus bisporus in a solid substrate, composted wheat straw. Biotechnol Lett 1:255–260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitchell, D.A., Krieger, N. (2006). The Kinetic Sub-model of SSF Bioreactor Models: General Considerations. In: Mitchell, D.A., Berovič, M., Krieger, N. (eds) Solid-State Fermentation Bioreactors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31286-2_14

Download citation

Publish with us

Policies and ethics