Skip to main content

Mathematical Morphology on Tensor Data Using the Loewner Ordering

  • Chapter
Visualization and Processing of Tensor Fields

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The notions of maximum and minimum are the key to the powerful tools of greyscale morphology. Unfortunately these notions do not carry over directly to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this chapter extends the maximum and minimum operation to the tensor-valued setting. This provides the ground to establish matrix-valued analogues of the basic morphological operations ranging from erosion/dilation to top hats. In contrast to former attempts to develop a morphological machinery for matrices, the novel definitions of maximal/minimal matrices depend continuously on the input data, a property crucial for the construction of morphological derivatives such as the Beucher gradient or a morphological Laplacian. These definitions are rotationally invariant and preserve positive semidefiniteness of matrix fields as they are encountered in DTMRI data. The morphological operations resulting from a component-wise maximum/minimum of the matrix channels disregarding their strong correlation fail to be rotational invariant. Experiments on DT-MRI images as well as on indefinite matrix data illustrate the properties and performance of our morphological operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. Springer, New York, 1999.

    Google Scholar 

  2. T. Brox, J. Weickert, B. Burgeth, and P. Mrázek. Nonlinear structure tensors. Technical report, Dept. of Mathematics, Saarland University, Saarbrücken, Germany, July 2004.

    Google Scholar 

  3. B. Burgeth, M. Welk, C. Feddern, and J. Weickert. Morphological operations on matrix-valued images. In T. Pajdla and J. Matas, editors, Computer Vision — ECCV 2004, Part IV, volume 3024 of Lecture Notes in Computer Science, pp. 155–167. Springer, Berlin, 2004.

    Google Scholar 

  4. C. Feddern, J. Weickert, B. Burgeth, and M. Welk. Curvature-driven PDE methods for matrix-valued images. International Journal of Computer Vision, 2005. In press.

    Google Scholar 

  5. B. Gärtner. http://www2.inf.ethz.ch/personal/gaertner/. WebPage last visited: July 2nd, 2004.

    Google Scholar 

  6. J. Goutsias, L. Vincent, and D. S. Bloomberg, editors. Mathematical Morphology and its Applications to Image and Signal Processing, volume 18 of Computational Imaging and Vision. Kluwer, Dordrecht, 2000.

    MATH  Google Scholar 

  7. R. M. Haralick. Digital step edges from zero crossing of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):58–68, 1984.

    Article  Google Scholar 

  8. H. J. A. M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.

    MATH  Google Scholar 

  9. R. Kimmel and A. M. Bruckstein. Regularized Laplacian zero crossings as optimal edge integrators. International Journal of Computer Vision, 53(3):225–243, 2003.

    Article  Google Scholar 

  10. H. P. Kramer and J. B. Bruckner. Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognition, 7:53–58, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the Royal Society of London, Series B, 207:187–217, 1980.

    Article  Google Scholar 

  12. G. Matheron. Eléments pour une théorie des milieux poreux. Masson, Paris, 1967.

    Google Scholar 

  13. J. Serra. Echantillonnage et estimation des phénomènes de transition minier. PhD thesis, University of Nancy, France, 1967.

    Google Scholar 

  14. J. Serra. Image Analysis and Mathematical Morphology, volume 1. Academic Press, London, 1982.

    MATH  Google Scholar 

  15. J. Serra. Image Analysis and Mathematical Morphology, volume 2. Academic Press, London, 1988.

    Google Scholar 

  16. P. Soille. Morphological Image Analysis. Springer, Berlin, 1999.

    MATH  Google Scholar 

  17. H. Talbot and R. Beare, editors. Proc. Sixth International Symposium on Mathematical Morphology and its Applications. Sydney, Australia, April 2002. http://www.cmis.csiro.au/ismm2002/proceedings/.

    Google Scholar 

  18. D. Tschumperlé and R. Deriche. Diffusion tensor regularization with constraints preservation. In Proc. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pp. 948–953, Kauai, HI, December 2001. IEEE Computer Society Press.

    Google Scholar 

  19. L. J. van Vliet, I. T. Young, and A. L. D. Beckers. A nonlinear Laplace operator as edge detector in noisy images. Computer Vision, Graphics and Image Processing, 45(2):167–195, 1989.

    Article  Google Scholar 

  20. J. Weickert and T. Brox. Diffusion and regularization of vector-and matrix-valued images. In M. Z. Nashed and O. Scherzer, editors, Inverse Problems, Image Analysis, and Medical Imaging, volume 313 of Contemporary Mathematics, pp. 251–268. AMS, Providence, 2002.

    Google Scholar 

  21. M. Welk, C. Feddern, B. Burgeth, and J. Weickert. Median filtering of tensor-valued images. In B. Michaelis and G. Krell, editors, Pattern Recognition, volume 2781 of Lecture Notes in Computer Science, pp. 17–24, Berlin, 2003. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burgeth, B., Welk, M., Feddern, C., Weickert, J. (2006). Mathematical Morphology on Tensor Data Using the Loewner Ordering. In: Weickert, J., Hagen, H. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31272-2_22

Download citation

Publish with us

Policies and ethics