Skip to main content

Responses of an Arable Crop Rotation System to Elevated [CO2]

  • Chapter
Managed Ecosystems and CO2

Part of the book series: Ecological Studies ((ECOLSTUD,volume 187))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob Change Biol 1:243–274

    Article  Google Scholar 

  • Batts GR, Morison JIL, Ellis RH, Hadley P, Wheeler TR (1997) Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur J Agron 7:43–52

    Article  Google Scholar 

  • Bender J, Hertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis of ‘ESPACE-Wheat’ results. Eur J Agron 10:185–195

    Article  Google Scholar 

  • Bethenod O, Ruget F, Katerji N, Combe L, Renard D (2001) Impact of atmospheric CO2 concentration on water use efficiency of maize. Maydica 46:75–80

    Google Scholar 

  • Brooks TJ, Wall GW, Pinter PJ, Kimball BA, LaMorte RL, Leavitt S, Matthias AD, Adamsen FJ, Hunsacker DJ, Webber AN (2000) Acclimation response of spring wheat in a free air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 3. Canopy architecture and gas exchange. Photosynth Res 66:97–108

    Article  PubMed  CAS  Google Scholar 

  • Burkart S, Manderscheid R, Weigel HJ (2000) Interacting effects of photosynthetic flux density and temperature on canopy photosynthesis of spring wheat under different CO2 concentrations. J Plant Physiol 157:31–39

    CAS  Google Scholar 

  • Canadell JG, Mooney HA, Baldocchi DD (2000) Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystems 3:115–130

    Article  CAS  Google Scholar 

  • Craigon J, Fangmeier A, Jones M, Donnelly A, Bindi M, De Temmerman L, Persson K, Ojanpera K (2002) Growth and marketable-yield responses of potato to increased CO2 and ozone. Eur J Agron 17:273–289

    Article  CAS  Google Scholar 

  • Craine JM, Wedin DA, Reich PB (2001) The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity. Global Change Biol 7:947–1053

    Article  Google Scholar 

  • Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38:127–145

    Article  Google Scholar 

  • Demmers-Derk H, Mitchell RAC, Mitchel VJ, Lawlor DW (1998) Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant Cell Environ 21:829–836

    Article  Google Scholar 

  • Dijkstra P, Schapendonk AHCM, Groenwold J (1993) Effects of CO2 enrichment on canopy photosynthesis, carbon economy and productivity of wheat and faba beans under field conditions. In: DeGeijn SC van, et al (eds) Climate change: crops and terrestrial ecosystems (Agrobiol.Themas 9). AB-DLO, Wageningen, pp 23–41

    Google Scholar 

  • Drake BG, Gonzalezmeler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48:609–639

    Article  CAS  Google Scholar 

  • FAOSTAT (2002) Food and Agriculture Organization of the United Nations, Statistical Databases. FAO, Rome

    Google Scholar 

  • Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116:191–195

    Article  Google Scholar 

  • Hendrey G (1992) Global greenhouse studies: need for a new approach to ecosystem manipulation. Crit Rev Plant Sci 11:61–74

    CAS  Google Scholar 

  • Hileman DR, Huluka G, Kenjige PK, Sinha N, Bhattacharya NC, Biswas PK, Lewin, KF, Nagy J, Hendrey GR (1994) Canopy photosynthesis and transpiration of field-grown cotton exposed to free-air CO2 enrichment (FACE) and differential irrigation. Agric For Meteorol 70:189–207

    Article  Google Scholar 

  • Hui D, Luo Y, Cheng W, Coleman S, Johnson DW, Sims DA (2001) Canopy radiation-and water-use efficiencies as affected by elevated CO2. Global Change Biol 7:75–91

    Article  Google Scholar 

  • Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agric For Meteorol 69:153–203

    Article  Google Scholar 

  • Kim HY, Lieffering M, Kobayashi K, Okada M, Miura S (2003) Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biol 9:826–837

    Article  Google Scholar 

  • Kimball BA, Mauney JR, Nakayama FS, Idso SB (1993) Effects of increasing atmospheric CO2 on vegetation. Vegetatio 104/105:65–75

    Article  Google Scholar 

  • Kimball BA, Lamorte RL, Seay RS, Pinter PJ, Rokey PJ, Hunsaker DJ, Dugas A, Heuer ML, Mauney JR, Hendrey GR, Lewin KF, Nagy J (1994) Effects of free-air CO2 enrichment on energy-balance and evapotranspiration of cotton. Agric For Meteorol 70:259–278

    Article  Google Scholar 

  • Kimball BA, Pinter PJ, Garcia RL, Lamorte RL, Wall GW, Hunsacker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biol 1:429–442

    Article  Google Scholar 

  • Kimball BA, Pinter PK, Wall GW, Garcia RL, LaMorte RL, Jak PMC, Frumau KFA, Vugts HF (1997) Comparison of responses of vegetation to elevated carbon dioxide in free-air and open-top chamber facilities. In: Allen LH, Kirkham MB, Olszyk DM, Whitman CE (eds) Advances in carbon dioxide effects research (ASA, CSSA and SSSA special publication 61) ASA/CSSA/SSSA, Madison, pp 113–130

    Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Lal R, Kimble JM, Follet KF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, Chelsea, 128 pp

    Google Scholar 

  • Lawlor D, Mitchell RAC (1991) The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies. Plant Cell Environ 14:807–818

    Article  Google Scholar 

  • Lewin KF, Hendrey G, Kolber Z (1992) Brookhaven National Laboratory free-air carbon dioxide enrichment facility. Crit Rev Plant Sci 11:135–141

    CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  PubMed  CAS  Google Scholar 

  • Martin-Olmedo P, Rees RM, Grace J (2002) The influence of plants grown under elevated CO2 and N fertilization on soil nitrogen dynamics. Global Change Biol 8:643–657

    Article  Google Scholar 

  • McLeod A, Long SP (1999) Free air carbon dioxide enrichment (FACE) in global change research: a review. Adv Ecol Res 28:1–55

    Article  CAS  Google Scholar 

  • Miglietta F, Magliulo V, Bindi M, Cerio L, Vaccari F, LoDuca V, Peressoti A (1998) Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biol 4:163–172

    Article  Google Scholar 

  • Mitchell RAC, Mitchell VJ, Driscoll SP, Franklin J, Lawlor DW (1993) Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at 2 levels of nitrogen application. Plant Cell Environ 16:521–529

    Article  CAS  Google Scholar 

  • Mosier AR (1998) Soil processes and global change. Biol Fertil Soils 27:221–229

    Article  CAS  Google Scholar 

  • Nakayama FS, Huluka G, Kimball BA, Lewin KF, Nagy J, Hendrey GR (1994) Soil carbon dioxide fluxes in natural and CO2-enriched systems. Agric For Meteorol 70:131–140

    Article  Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Change 14:53–67

    Article  Google Scholar 

  • Pendall E, Leavitt SW, Brooks T, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Wechsung G, Wechsung F, Adamsen F, Matthias AD, Thompson TL (2001) Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl Ecol 2:193–201

    Article  CAS  Google Scholar 

  • Polley HW (2002) Implications of atmospheric and climatic change for crop yield. Crop Sci 42:131–140

    Article  PubMed  Google Scholar 

  • Pritchard SG, Rogers HH (2000) Spatial and temporal development of crop roots in CO2-enrichment environments. New Phytol 147:55–71

    Article  CAS  Google Scholar 

  • Reddy KR, Hodges, HF (2000) Climate change and global crop productivity. CAB International, Wallingford, 472 pp

    Google Scholar 

  • Rogers HH, Runion GB, Krupa SV, Prior SA (1997) Plant responses to atmospheric CO2 enrichment: implications in root-soil-microbe interactions. In: Allen LH, et al (eds) Advances in carbon dioxide effects research (ASA special publications 61). ASA, Madison, pp 1–34

    Google Scholar 

  • Rosenzweig C, Hillel D (1998) Climate change and the global harvest. Oxford University Press, Oxford, 324 pp

    Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 25:2–68

    Google Scholar 

  • Schapendonk AHCM, Van Oijen M, Dijkstra P, Pot CS, Jordi WJRM, Stoopen GM (2000) Effects of elevated CO2 concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top chambers. Aust J Plant Physiol 27:1119–1130

    Google Scholar 

  • Van Oijen M, Schapendonk AHCM, Jansen MJH, Pot CS, Maciorowski R (1999) Do open-top chambers overestimate the effects of rising CO2 on plants? An analysis using spring wheat. Global Change Biol 5:411–421

    Article  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grasses (Poaceae) species to elevated atmospheric CO2 concentrations: a meta-analytic test of current theories and perceptions. Global Change Biol 5:723–741

    Article  Google Scholar 

  • Weigel HJ, Manderscheid R, Jäger HJ, Mejer GJ (1994) Effects of season-long CO2 enrichment on cereals. I. Growth performance and yield. Agric Ecosyst Environ 48:231–240

    Article  Google Scholar 

  • Weigel HJ, Dämmgen U (2000) The Braunschweig carbon project: atmospheric flux monitoring and free air carbon dioxide enrichment (FACE). J Appl Bot 74:55–60

    Google Scholar 

  • Zak DR, Pregnitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weigel, H.J. et al. (2006). Responses of an Arable Crop Rotation System to Elevated [CO2]. In: Nösberger, J., Long, S.P., Norby, R.J., Stitt, M., Hendrey, G.R., Blum, H. (eds) Managed Ecosystems and CO2 . Ecological Studies, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31237-4_7

Download citation

Publish with us

Policies and ethics