Responses of an Arable Crop Rotation System to Elevated [CO2]

  • H. J. Weigel
  • R. Manderscheid
  • S. Burkart
  • A. Pacholski
  • K. Waloszczyk
  • C. Frühauf
  • O. Heinemeyer
Part of the Ecological Studies book series (ECOLSTUD, volume 187)


Soil Respiration Leaf Area Index Winter Barley Global Change Biol Canopy Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob Change Biol 1:243–274CrossRefGoogle Scholar
  2. Batts GR, Morison JIL, Ellis RH, Hadley P, Wheeler TR (1997) Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur J Agron 7:43–52CrossRefGoogle Scholar
  3. Bender J, Hertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis of ‘ESPACE-Wheat’ results. Eur J Agron 10:185–195CrossRefGoogle Scholar
  4. Bethenod O, Ruget F, Katerji N, Combe L, Renard D (2001) Impact of atmospheric CO2 concentration on water use efficiency of maize. Maydica 46:75–80Google Scholar
  5. Brooks TJ, Wall GW, Pinter PJ, Kimball BA, LaMorte RL, Leavitt S, Matthias AD, Adamsen FJ, Hunsacker DJ, Webber AN (2000) Acclimation response of spring wheat in a free air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 3. Canopy architecture and gas exchange. Photosynth Res 66:97–108PubMedCrossRefGoogle Scholar
  6. Burkart S, Manderscheid R, Weigel HJ (2000) Interacting effects of photosynthetic flux density and temperature on canopy photosynthesis of spring wheat under different CO2 concentrations. J Plant Physiol 157:31–39Google Scholar
  7. Canadell JG, Mooney HA, Baldocchi DD (2000) Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystems 3:115–130CrossRefGoogle Scholar
  8. Craigon J, Fangmeier A, Jones M, Donnelly A, Bindi M, De Temmerman L, Persson K, Ojanpera K (2002) Growth and marketable-yield responses of potato to increased CO2 and ozone. Eur J Agron 17:273–289CrossRefGoogle Scholar
  9. Craine JM, Wedin DA, Reich PB (2001) The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity. Global Change Biol 7:947–1053CrossRefGoogle Scholar
  10. Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38:127–145CrossRefGoogle Scholar
  11. Demmers-Derk H, Mitchell RAC, Mitchel VJ, Lawlor DW (1998) Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant Cell Environ 21:829–836CrossRefGoogle Scholar
  12. Dijkstra P, Schapendonk AHCM, Groenwold J (1993) Effects of CO2 enrichment on canopy photosynthesis, carbon economy and productivity of wheat and faba beans under field conditions. In: DeGeijn SC van, et al (eds) Climate change: crops and terrestrial ecosystems (Agrobiol.Themas 9). AB-DLO, Wageningen, pp 23–41Google Scholar
  13. Drake BG, Gonzalezmeler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48:609–639CrossRefGoogle Scholar
  14. FAOSTAT (2002) Food and Agriculture Organization of the United Nations, Statistical Databases. FAO, RomeGoogle Scholar
  15. Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116:191–195CrossRefGoogle Scholar
  16. Hendrey G (1992) Global greenhouse studies: need for a new approach to ecosystem manipulation. Crit Rev Plant Sci 11:61–74Google Scholar
  17. Hileman DR, Huluka G, Kenjige PK, Sinha N, Bhattacharya NC, Biswas PK, Lewin, KF, Nagy J, Hendrey GR (1994) Canopy photosynthesis and transpiration of field-grown cotton exposed to free-air CO2 enrichment (FACE) and differential irrigation. Agric For Meteorol 70:189–207CrossRefGoogle Scholar
  18. Hui D, Luo Y, Cheng W, Coleman S, Johnson DW, Sims DA (2001) Canopy radiation-and water-use efficiencies as affected by elevated CO2. Global Change Biol 7:75–91CrossRefGoogle Scholar
  19. Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agric For Meteorol 69:153–203CrossRefGoogle Scholar
  20. Kim HY, Lieffering M, Kobayashi K, Okada M, Miura S (2003) Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biol 9:826–837CrossRefGoogle Scholar
  21. Kimball BA, Mauney JR, Nakayama FS, Idso SB (1993) Effects of increasing atmospheric CO2 on vegetation. Vegetatio 104/105:65–75CrossRefGoogle Scholar
  22. Kimball BA, Lamorte RL, Seay RS, Pinter PJ, Rokey PJ, Hunsaker DJ, Dugas A, Heuer ML, Mauney JR, Hendrey GR, Lewin KF, Nagy J (1994) Effects of free-air CO2 enrichment on energy-balance and evapotranspiration of cotton. Agric For Meteorol 70:259–278CrossRefGoogle Scholar
  23. Kimball BA, Pinter PJ, Garcia RL, Lamorte RL, Wall GW, Hunsacker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biol 1:429–442CrossRefGoogle Scholar
  24. Kimball BA, Pinter PK, Wall GW, Garcia RL, LaMorte RL, Jak PMC, Frumau KFA, Vugts HF (1997) Comparison of responses of vegetation to elevated carbon dioxide in free-air and open-top chamber facilities. In: Allen LH, Kirkham MB, Olszyk DM, Whitman CE (eds) Advances in carbon dioxide effects research (ASA, CSSA and SSSA special publication 61) ASA/CSSA/SSSA, Madison, pp 113–130Google Scholar
  25. Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free air CO2 enrichment. Adv Agron 77:293–368CrossRefGoogle Scholar
  26. Lal R, Kimble JM, Follet KF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, Chelsea, 128 ppGoogle Scholar
  27. Lawlor D, Mitchell RAC (1991) The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies. Plant Cell Environ 14:807–818CrossRefGoogle Scholar
  28. Lewin KF, Hendrey G, Kolber Z (1992) Brookhaven National Laboratory free-air carbon dioxide enrichment facility. Crit Rev Plant Sci 11:135–141Google Scholar
  29. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  30. Martin-Olmedo P, Rees RM, Grace J (2002) The influence of plants grown under elevated CO2 and N fertilization on soil nitrogen dynamics. Global Change Biol 8:643–657CrossRefGoogle Scholar
  31. McLeod A, Long SP (1999) Free air carbon dioxide enrichment (FACE) in global change research: a review. Adv Ecol Res 28:1–55CrossRefGoogle Scholar
  32. Miglietta F, Magliulo V, Bindi M, Cerio L, Vaccari F, LoDuca V, Peressoti A (1998) Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biol 4:163–172CrossRefGoogle Scholar
  33. Mitchell RAC, Mitchell VJ, Driscoll SP, Franklin J, Lawlor DW (1993) Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at 2 levels of nitrogen application. Plant Cell Environ 16:521–529CrossRefGoogle Scholar
  34. Mosier AR (1998) Soil processes and global change. Biol Fertil Soils 27:221–229CrossRefGoogle Scholar
  35. Nakayama FS, Huluka G, Kimball BA, Lewin KF, Nagy J, Hendrey GR (1994) Soil carbon dioxide fluxes in natural and CO2-enriched systems. Agric For Meteorol 70:131–140CrossRefGoogle Scholar
  36. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Change 14:53–67CrossRefGoogle Scholar
  37. Pendall E, Leavitt SW, Brooks T, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Wechsung G, Wechsung F, Adamsen F, Matthias AD, Thompson TL (2001) Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl Ecol 2:193–201CrossRefGoogle Scholar
  38. Polley HW (2002) Implications of atmospheric and climatic change for crop yield. Crop Sci 42:131–140PubMedCrossRefGoogle Scholar
  39. Pritchard SG, Rogers HH (2000) Spatial and temporal development of crop roots in CO2-enrichment environments. New Phytol 147:55–71CrossRefGoogle Scholar
  40. Reddy KR, Hodges, HF (2000) Climate change and global crop productivity. CAB International, Wallingford, 472 ppGoogle Scholar
  41. Rogers HH, Runion GB, Krupa SV, Prior SA (1997) Plant responses to atmospheric CO2 enrichment: implications in root-soil-microbe interactions. In: Allen LH, et al (eds) Advances in carbon dioxide effects research (ASA special publications 61). ASA, Madison, pp 1–34Google Scholar
  42. Rosenzweig C, Hillel D (1998) Climate change and the global harvest. Oxford University Press, Oxford, 324 ppGoogle Scholar
  43. Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 25:2–68Google Scholar
  44. Schapendonk AHCM, Van Oijen M, Dijkstra P, Pot CS, Jordi WJRM, Stoopen GM (2000) Effects of elevated CO2 concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top chambers. Aust J Plant Physiol 27:1119–1130Google Scholar
  45. Van Oijen M, Schapendonk AHCM, Jansen MJH, Pot CS, Maciorowski R (1999) Do open-top chambers overestimate the effects of rising CO2 on plants? An analysis using spring wheat. Global Change Biol 5:411–421CrossRefGoogle Scholar
  46. Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grasses (Poaceae) species to elevated atmospheric CO2 concentrations: a meta-analytic test of current theories and perceptions. Global Change Biol 5:723–741CrossRefGoogle Scholar
  47. Weigel HJ, Manderscheid R, Jäger HJ, Mejer GJ (1994) Effects of season-long CO2 enrichment on cereals. I. Growth performance and yield. Agric Ecosyst Environ 48:231–240CrossRefGoogle Scholar
  48. Weigel HJ, Dämmgen U (2000) The Braunschweig carbon project: atmospheric flux monitoring and free air carbon dioxide enrichment (FACE). J Appl Bot 74:55–60Google Scholar
  49. Zak DR, Pregnitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • H. J. Weigel
    • 1
  • R. Manderscheid
    • 1
  • S. Burkart
    • 1
  • A. Pacholski
    • 1
  • K. Waloszczyk
    • 1
  • C. Frühauf
    • 1
  • O. Heinemeyer
    • 1
  1. 1.Institute of AgroecologyFederal Agricultural Research Centre (FAL)BraunschweigGermany

Personalised recommendations