FACE Value: Perspectives on the Future of Free-Air CO2 Enrichment Studies

  • A. Rogers
  • E. A. Ainsworth
  • C. Kammann
Part of the Ecological Studies book series (ECOLSTUD, volume 187)

24.6 Conclusion

Free-air CO2 enrichment studies have been a valuable tool for the investigation of plant and ecosystem responses to rising CO2 levels. The challenges for the next phase of FACE research are clear.
  • Multidisciplinary teams of investigators must take advantage of emerging technologies to significantly increase our mechanistic understanding of the responses that FACE experiments have confirmed will take place during the next century.

  • If we seek the ability to predict and understand how our managed, and natural, ecosystems will respond to the predicted multiple and concurrent changes in our environment, more interactions with other global change factors must be included in future experiments. To meet these challenges, future FACE experiments will need to be larger to accommodate multiple environmental changes.


Arbuscular Mycorrhizal Fungus Global Change Biol Belowground Primary Productivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharoni A, Vorst O (2002) DNA microarrays for functional genomics. Plant Mol Biol 48: 99–118PubMedCrossRefGoogle Scholar
  2. Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nosberger J, Long SP (2003) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE). Plant Cell Environ 26: 705–714CrossRefGoogle Scholar
  3. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of responses to rising CO2 in photosynthesis, canopy properties and plant production. New Phytol 165:351–371PubMedCrossRefGoogle Scholar
  4. Allard V, Newton PCD, Lieffering M, Soussana JF, Grieu P, Matthew C (2004) Elevated CO2 effects on decomposition processes in a grazed grassland. Global Change Biol 10:1553–1564CrossRefGoogle Scholar
  5. Almeida JPF, Lüscher A, Frehner M, Oberson A, Nöberger J, (1999) Partitioning of P and the activity of root acid phosphatase in white clover (Trifolium repens L.) are modified by increased atmospheric CO2 and P fertilization. Plant Soil 210:159–166CrossRefGoogle Scholar
  6. Almeida JPF, Hartwig UA, Frehner M, Nösberger J, Lüscher A, (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297PubMedCrossRefGoogle Scholar
  7. Baggs EM, Richter M, Cadisch G, Hartwig UA (2003a) Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biol Biochem 35:729–732CrossRefGoogle Scholar
  8. Baggs EM, Richter M, Hartwig UA, Cadisch G (2003b) Nitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE). Global Change Biol 9:1214–1222CrossRefGoogle Scholar
  9. Barnard R, Barthes L, Le Roux X, Leadley PW (2004) Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2. New Phytol 162:365–376CrossRefGoogle Scholar
  10. BassiriRad H, Constable JVH, Lussenhop J, Kimball BA, Norby RJ, Oechel WC, Reich PB, Schlesinger WH, Zitzer S, Sehtiya HL, Silim S (2003) Widespread foliage d15N depletion under elevated CO2: inferences for the nitrogen cycle. Global Change Biol 9:1582–1590CrossRefGoogle Scholar
  11. Billings SA, Schaeffer SM, Evans RD (2004) Soil microbial activity and N availability with elevated CO2 in Mojave desert soils. Global Biogeochem Cycles 18:1–11CrossRefGoogle Scholar
  12. Blanchard JL (2004) Bioinformatics and systems biology, rapidly evolving tools for interpreting plant response to global change. Field Crops Res 90:117–131CrossRefGoogle Scholar
  13. Carey EV, Sala A, Keane R, Callaway RM (2001) Are old forests underestimated as global sinks? Global Change Biol 7:339–344CrossRefGoogle Scholar
  14. Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol 4:43–54CrossRefGoogle Scholar
  15. Coûteaux M-M, Bolger T (2000) Interactions between atmospheric CO2 enrichment and soil fauna. Plant Soil 224:123–134CrossRefGoogle Scholar
  16. Cubasch U, Meehl GA (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ van der, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 527–582Google Scholar
  17. Dacey JWH, Drake BG, Klug MJ (1994) Stimulation of methane emissions by carbon dioxide enrichment of marsh vegetation. Nature 370:47–49CrossRefGoogle Scholar
  18. Del Galdo I, Six J, Peressotti A, Cotrufo MF (2003) Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biol 9:1204–1213CrossRefGoogle Scholar
  19. Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639PubMedCrossRefGoogle Scholar
  20. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  21. Finzi AC, Delucia EH, Hamilton JG, Richter DD, Schlesinger WH (2002) The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132:567–578CrossRefGoogle Scholar
  22. Foyer CH, Parry M, Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54:585–593PubMedCrossRefGoogle Scholar
  23. Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M, Hendriks JHM, Palcios N, Cross J, Selbig J, Stitt M. (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325PubMedCrossRefGoogle Scholar
  24. Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA (2005) Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biol 11:1402–1423CrossRefGoogle Scholar
  25. Hungate BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579CrossRefGoogle Scholar
  26. Ineson P, Coward PA, Hartwig UA (1998) Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant Soil 198:89–95CrossRefGoogle Scholar
  27. Inubushi K, Cheng WG, Aonuma S, Hoque MM, Kobayashi K, Miura S, Kim HY, Okada M (2003) Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biol 9:1458–1464CrossRefGoogle Scholar
  28. Izaurralde RC, Rosenberg NJ, Brown RA, Thomson AM (2003) Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States. Agric For Meteorol 117:97–122CrossRefGoogle Scholar
  29. Kammann C, Grünhage L, Grüters U, Janze S, Jäger H-J (2005) Response of aboveground grassland biomass and soil moisture to moderate long-term CO2 enrichment. Basic Appl Ecol 6:351–365CrossRefGoogle Scholar
  30. Karnosky DF, Mankovska B, Percy K, Dickson RE, Podila GK, Sober J, Noormets A, Hendrey GR, Coleman MD, Kubiske M, Pregitzer KS, Isebrands JG (1999). Effects of tropospheric O3 on trembling aspen and interaction with CO2: Results from an O3-gradient and a FACE experiment. J Water Air Soil Pollut 116:311–322CrossRefGoogle Scholar
  31. Kersten B, Buerkle L, Kuhn EJ, Giavalisco P, Konthur Z, Lueking A, Walter G, Eickhoff H, Schneider U (2002) Large-scale plant proteomics. Plant Mol Biol 48:133–141PubMedCrossRefGoogle Scholar
  32. Kessel C van, Horwath WR, Hartwig U, Harris D, Lüscher A (2000) Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years. Global Change Biol 6:435–444CrossRefGoogle Scholar
  33. Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368CrossRefGoogle Scholar
  34. Kimball BA, Pinter PJ, Garcia RL, LaMorte RL, Wall GW, Hunsaker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air Co2 enrichment. Global Change Biol 1:429–442CrossRefGoogle Scholar
  35. King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS. 2004. A multi-year synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biol 10:1027–1042CrossRefGoogle Scholar
  36. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedCrossRefGoogle Scholar
  37. Kopka J, Fernie A, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5:109PubMedCrossRefGoogle Scholar
  38. Leakey ADB, Bernacchi CJ, Dohleman FG, Ort DR, Long SP (2004) Will photosynthesis of maize in the US Corn Belt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Global Change Biol 10:951–962CrossRefGoogle Scholar
  39. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  40. Long SP Woodward FI (1988) Plants and temperature. Symposium of the Society for Experimental Biology, Cambridge University Press, CambridgeGoogle Scholar
  41. Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biol 9:838–848CrossRefGoogle Scholar
  42. Luo Y, Reynolds JF (1999) Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80:1568–1583Google Scholar
  43. Marchi S, Tognetti R, Vaccari FP, Lanini M, Kaligaric M, Miglietta F, Raschi A (2004) Physiological and morphological responses of grassland species to elevated atmospheric CO2 (concentrations in FACE-systems and natural CO2 springs. Funct Plant Biol 31:181–194CrossRefGoogle Scholar
  44. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176PubMedCrossRefGoogle Scholar
  45. Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res 90:47–59CrossRefGoogle Scholar
  46. Montealegre CM, van Kessel C, Blumenthal JM, Hur HG, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Global Change Biol 6:475–482CrossRefGoogle Scholar
  47. Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135:2348–2357PubMedCrossRefGoogle Scholar
  48. Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentrations and temperature on plant growth. Plant Cell Environ 22:659–682CrossRefGoogle Scholar
  49. Müller C, Stevens RJ, Laughlin RJ (2004) A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol Biochem 36:619–632CrossRefGoogle Scholar
  50. Newton PCD, Carran RA, Lawrence EJ (2004) Reduced water repellency of a grassland soil under elevated atmospheric CO2. Global Change Biol 10:1–4CrossRefGoogle Scholar
  51. Newton PCD, Clark H, Edwards GR, Ross DJ (2001) Experimental confirmation of ecosystem model predictions comparing transient and equilibrium plant responses to elevated atmospheric CO2. Ecol Lett 4:344–347CrossRefGoogle Scholar
  52. Niklaus PA, Körner C (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511Google Scholar
  53. Nijs I, Teughels H, Blum H, Hendrey G, Impens I (1996) Simulation of climate change with infrared heaters reduces the productivity of Lolium perenne L. in summer. Environ Exp Bot 36:271–280CrossRefGoogle Scholar
  54. Norby RJ, Cotrufo MF (1998) Global change — a question of litter quality. Nature 396:17–18CrossRefGoogle Scholar
  55. Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165CrossRefGoogle Scholar
  56. Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162: 253–280CrossRefGoogle Scholar
  57. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472PubMedCrossRefGoogle Scholar
  58. Ostle N, Ineson P, Benham D, Sleep D (2000) Carbon assimilation and turnover in grassland vegetation using an in situ 13CO2 pulse labelling system. Rapid Commun Mass Spectrom 14:1345–1350PubMedCrossRefGoogle Scholar
  59. Pendall E (2002) Where does all the carbon go? The missing sink. New Phytol 153:207–210CrossRefGoogle Scholar
  60. Prather M, Ehhalt D (2001) Atmospheric chemistry and green house gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ van der, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 241–287Google Scholar
  61. Prentice IC (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ van der, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 183–238Google Scholar
  62. Phillips RL, Whalen SC, Schlesinger WH (2001a) Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Global Change Biol 7:557–563CrossRefGoogle Scholar
  63. Phillips RL, Whalen SC, Schlesinger WH (2001b) Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest ecosystem. Global Biogeochem Cycles 15:741–752CrossRefGoogle Scholar
  64. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649PubMedCrossRefGoogle Scholar
  65. Rasse DP, Peresta G, Drake BG (2005) Seventeen years of elevated CO2 exposure in a Chesapeake Bay wetland: sustained but contrasting responses of plant growth and CO2 uptake. Global Change Biol 11:369–377CrossRefGoogle Scholar
  66. Richter M, Hartwig UA, Frossard E, Nösberger J, Cadisch G (2003) Gross fluxes of nitrogen in grassland soil exposed to elevated atmospheric pCO2 for seven years. Soil Biol Biochem 35:1325–1335CrossRefGoogle Scholar
  67. Rillig MC, Wright SF, Kimball BA, Pinter PJ, Wall GW, Ottman MJ, Leavitt SW (2001) Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biol 7:333–337CrossRefGoogle Scholar
  68. Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162PubMedCrossRefGoogle Scholar
  69. Rogers A, Humphries H (2000) A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Global Change Biol 6:1005–1011CrossRefGoogle Scholar
  70. Ross DJ, Tate KR, Newton PCD, Wilde RH, Clark H (2000) Carbon and nitrogen pools and mineralization in a grassland gley soil under elevated carbon dioxide at a natural CO2 spring. Global Change Biol 6:779–790CrossRefGoogle Scholar
  71. Saarnio S, Saarinen T, Vasander H, Silvola J (2000) A moderate increase in the annual CH4 efflux by raised CO2 or NH4NO3 supply in a boreal oligotrophic mire. Global Change Biol 6:137–144CrossRefGoogle Scholar
  72. Schulze ED, Wirth C, Heimann M (2000) Managing forests after Kyoto. Science 289:2058–2059PubMedCrossRefGoogle Scholar
  73. Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140PubMedCrossRefGoogle Scholar
  74. Strain BR, Bazzaz FA (1983) Terrestrial plant communities. In: Lemon E (ed) CO2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. AAAS Selected Symposium 84. AAAS, Washington, D.C., pp 177–222Google Scholar
  75. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689PubMedCrossRefGoogle Scholar
  76. Wright SF, Anderson RL (2000) Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol Fertil Soils 31:249–253CrossRefGoogle Scholar
  77. Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants — a reterospective analaysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920Google Scholar
  78. Yeates GW, Newton PCD, Ross DJ (2003) Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biol Fertil Soils 38:319–326CrossRefGoogle Scholar
  79. Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Rogers
    • 1
  • E. A. Ainsworth
    • 2
  • C. Kammann
    • 3
  1. 1.Environmental Sciences DepartmentBrookhaven National Laboratory, UptonNew YorkUSA
  2. 2.USDA/ARS Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  3. 3.Institute for Plant EcologyUniversity of GiessenGiessenGermany

Personalised recommendations